Bioremediation of Zn, Cu, Mg and Pb in Fresh Domestic Sewage by Brevibacterium sp.

Document Type : Original Research Paper



2 NMAM Institute of Technology, India


The study applied an isolated Brevibacterium sp. (MTCC 10313) for bioremediation of Zn, Cu, Mg and Pb in domestic sewage. Batch culture experiments were performed on both the fresh and stale sewage samples with glucose supplementation of 1-8g/l. Nutrient broth medium was prepared, sterilized and pH adjusted to 6.5-6.8. 1% of the Brevibacteria sp. stock was inoculated into the broth and maintained at 370C for 24hrs in shaker incubator at 120 rpm. Another 1% of fresh grown sub-culture of broth was inoculated into supplemented and sterilized samples. Optical Density was taken at 600nm, growth monitored over 12 days, cultured samples denatured with TCA and centrifuged, supernatants filtered and analyzed with AAS, Settled pellets oven dried, subjected to SEM analysis for morphology and constituents determination.

Fresh sewage samples permitted bacterial growth and facilitated bioremediation of Zn, Cu and Mg through metal uptake and bioabsoption by Brevibacteria sp. This effectively reduced concentration of heavy metals, with treatment efficiency order Cu>Zn>Mg, and respective removal percentages of 77, 63 and 55. The optimum glucose concentration for effective bioremediation found as 2g/l for Zn and Cu, and 8g/l for Mg. Pb was resistant to bioremediation with Brevibacteria sp. Stale sewage produced inhibitory substances preventing adequate growth of bacterium with no bioremediation.

Bioremediation with Brevibacteria sp. is found effective in removal of micro-units of Zn, Cu and Mg from domestic sewage. As a readily available low-cost agent, it is recommended for large- scale application on those metals while Pb should be further subjected to advanced treatments.