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ABSTRACT:Numerous studies yet have been carried out on downscaling of the large-scale climate data using
both dynamical and statistical methods to investigate the hydrological and meteorological impacts of climate
change on different parts of the world. This study was also conducted to investigate the capability of feed-
forward neural network with error back-propagation algorithm to downscale the provincial segmentation of
Iran (30 provinces) on a daily scale. This model was proposed for the downscaling daily temperature,
precipitation and wind speed data, and it was calibrated and verified by using the daily outputs derived from
the National Center for Environmental Prediction (NCEP) database including air temperature, air pressure,
absolute and relative air humidity, wind speed and direction, and data for the base period (1982-2001) at the
selected synoptic station in each province. Correlation and root mean square error (RMSE) coefficients were
used to analyze the performance of the proposed models. These criteria indicated the high accuracy of the
proposed models in downscaling of daily temperature parameter rather than precipitation and wind speed
parameters.
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INTRODUCTION
Undoubtedly, climate change is one of the most

important challenges for the current climate conditions,
which occurs on a global scale and has a profound
effect on all countries, especially their water resources
(Matondo, 2004).  Climate change can lead to rise of
temperature, changes in rainfall pattern and decrease
or increase of rainfall in various seasons. It can also
affect the available water resources, so that some areas
may face with runoff reduction or peak flow in early
spring, and flow limit values (floodwater and drought)
may also be further intensified (Dibike et al., 2004;
Houghton et al., 2000; Motiee,2009; Samadi,2012).
Complex models, known as Global Climate Models
(GCMs), are used to study the climate system and its
global-scale changes. These models mathematically

simulate the physical behavior of the Earth, atmosphere
and ocean system (Mendes et al., 2010). The main
problems in utilization of GCM outputs are their low
resolution and, particularly, spatial large-scaleness of
their computational cells in proportion to the study
area, which require them to be downscaled through
appropriate methods (Xu C y,1999; Boosik et al,2009).
There are many different methods for the downscaling,
but it is not yet quite evident that which method has
the capability to reproduce more realistic data (Hoai
et al., 2011). The following are some of the related
studies on application of neural network for the
downscaling of climate variables.

(Sailor et al., 2000) used feed-forward neural
network and error back-propagation algorithm with a
sigmoid transfer function to predict future wind speed
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over three regions in the United Sates (one in Texas
and two in California). The studied large-scale climate
variables were temperature, pressure and mean sea
level (MSL), sea surface specific humidity and 700 and
850 hPa geo-potential heights, high-altitude wind, etc.
The results of their study indicated a wind speed
decrease of 0.4% and 0.8% over the two regions in
California, and a wind speed increase of 2.7% over the
other region in Texas on an annual scale (Xu, 1999).
Boosik et al. (2009), in another study, used the large-
scale outputs from the Third Generation Coupled Global
Climate Model (CGCM3), including precipitation, sea
surface pressure, near-surface temperature, etc., as
inputs to the feed-forward neural network with error
back-propagation algorithm, and predicted the
precipitation and pressure on a regional scale
(Christensen et al., 2005). Moreover, (Mendes et al.,
2010) and (Hoai et al., 2011) studied the performance
of feed-forward neural network with error back-
propagation algorithm and hyperbolic tangent transfer
function in downscaling daily precipitation over the
Amazon Basin and central Vietnam. Finally, they
compared the performance of neural network model to
that of the statistical autocorrelation and linear
regression models. The obtained results revealed that
the neural network model outperforms the statistical
autocorrelation and linear regression models (IPCC,
2007; Sailor et al., 2000). The results obtained by
(Chadwick et al. ,  2011), also, indicate the
outperformance of multilayer perceptron (MLP) neural
network model in downscaling of temperature rather
than precipitation (Coulibaly, 2000). (Samadi et al., 2012),
compared the performance of Statistical Downscaling
Model (SDSM) to that of Time Lagged Feed-forwarded
Network (TLFN) in order to downscale the large-scale
temperature and precipitation parameters derived from
HadCM3 (Hadley Centre Coupled Model, version 3) in
Karkheh catchment located in western Iran. Notably,
the coefficient of determination of neural network in
their study was 0.7 for precipitation and 0.91 for
temperature, and fitted well with hyperbolic tangent
transfer function giving the most appropriate result.
In general, it should be noted that parameters such as
sea surface specific humidity and 500 hPa geo-potential
height, near-surface wind speed, 850 hPa geo-potential
heights and also mean temperature at 2 m are
considered to be the most important inputs in majority
of downscaling methods. It is noteworthy that all of
these studies are relying on an assumption that the
relationships between large-scale variables and
observational data remain unchanged for the base and
future periods, which can make serious errors in future
predictions.

In this study, temperature, precipitation and wind
speed values pertaining to the whole 30 provinces of
Iran were considered in order to investigate the
impact of climate change on meteorological
parameters of the country. Subsequently, the
appropr ia te models were iden t i fied after
downscaling of the parameters on a daily scale with
the help of neural network model.

MATERIALS & METHODS
This study aims to downscale the climate

parameters (temperature, precipitation and wind
speed) in Iran provincial segmentation. For this
purpose, the synoptic stations with a suitable
statistical period at each province were selected at
the first step. Then, Iran provincial segmentation map
was interpolated onto the gridded NCEP database
map in order to adjust the large-scale atmospheric
GCM outputs to the provincial segmentation. In this
procedure the intended computational cells were
specified, and those related to the large-scale
parameters of each province were selected according
to the location of each synoptic station. Demonstrates
the interpolation of Iran map onto the gridded large-
scale climate model. As previously mentioned, in this
study, the daily statistics related to the large-scale
climate models for the base period were extracted from
their database websites (www.cccsn.ca) using the
exact coordinates of the given regions. Large-scale
variables (predicators) derived from NCEP database,
which were used as inputs to neural network models
for the base period in this study, are presented in
Table 1.

After specifying the computational cells
corresponding to each province, it was attempted to
establish a downscaling model. Considering a host of
studies on downscaling, some of which were discussed
earlier in the introduction, the large-scale climate
variables involved in the downscaling of temperature,
precipitation and wind speed parameters were
determined in this study (Table 1). Afterwards, the best
performing network for each province was determined
through designing various neural networks and
evaluating their performances.  Feed-forward networks
account for about 90% of the networks mostly applied
in different fields Goasian et al., 2003). The general
architecture of this neural network includes three layers:
input, hidden and output. Since the number of neurons
placed in the input layer must be matched with the
input dimension of each input pattern, the size of input
layer depends on the dimension of input data. Likewise,
the number of neurons placed in the output layer
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Table 1. NCEP large-scale variables (predicators)
No. Predictors Description 

1 ncepmslp Mean sea level pressure 

2 ncepp__f surface Geostrophic air flow velocity 

3 ncepp__u surface Zonal velocity component 

4 ncepp__v surface Meridional velocity component 

5 ncepp__z surface Vorticity 

6 ncepp_th surface Wind direction 

7 ncepp_zh surface Divergence 

8 ncepp5_f 500 hPa height Geostrophic air flow velocity 

9 ncepp5_u 500 hPa height Zonal velocity component 

10 ncepp5_v 500 hPa height Meridional velocity component 

11 ncepp5_z 500 hPa height Vorticity 

12 ncepp5th 500 hPa height Wind direction 

13 ncepp5zh 500 hPa height Divergence 

14 ncepp8_f 850 hPa height Geostrophic air flow velocity 

15 ncepp8_u 850 hPa height Zonal velocity component 

16 ncepp8_v 850 hPa height Meridional velocity component 

17 ncepp8_z 850 hPa height Vorticity 

18 ncepp8th 850 hPa height Wind direction 

19 ncepp8zh 850 hPa height Divergence 

20 ncepp500 500 hPa geopotential height 

21 ncepp850 850 hPa geopotential height 

22 ncepr500 Relative humidity at 500 hPa height 

23 ncepr850 Relative humidity at 850 hPa height 

24 nceprhum Near surface relative humidity 

25 ncepshum Near surface specific humidity 

26 nceptemp Mean temperature at 2 m 

 
should be equal to the number of outputs. No criterion
exists to specify the number of neurons at the hidden
layer, and typically it is done by trial and error so that
the network gives a reasonable response. The method
commonly used to determine the number of neurons in
a neural network is that, primarily, one neuron is
selected to represent the number of neurons at the
middle layer, and then the network is trained to produce
the results. Afterwards, the number of neurons is
gradually increased to the extent that no significant
change is noticed in the network results even by further
neuron increasing. The number of neurons at this stage

would represent their desired number in the middle
layer. The feed-forward neural network with error back-
propagation algorithm was used in the present study
(Chadwick et al., 2011). Generally, this study used a
combination of various inputs derived from the large-
scale climate variables presented in Table 1 for
downscaling the temperature, precipitation and wind
speed parameters over each province on a daily scale.
Inputs to the neural network were, in fact, the large-
scale climate variables derived from the NCEP
database, while the outputs were daily temperature,
daily precipitation and daily wind speed. All the daily
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Where  is simulated data,  is observational
data,  is data mean,  is standard deviation of data,
and n is number of the data. ρ value, ranging from 0 to
1, represents a linear relationship between simulated
and observational data. The closer the ρ value is to 1,
the stronger the linear relationship between the two
variables. Since the correlation coefficient shows only
behavioral pattern of two data sets, another criterion
such as RMSE is also used. The RMSE, ranging from 0
to 1, with smaller values indicates a less difference
between simulated and observational data and thereby
a better model fit.

RESULTS & DISCUSSION
Considering a large number of studies on

downscaling by ANN, some of which were discussed
earlier in the introduction, the large-scale climate
variables having a key role in the downscaling of
temperature, precipitation and wind speed parameters
were identified in this study. The designed networks
were verified by the large-scale climate data for the
base period and by the synoptic stations statistics for
the corresponding period, and finally the best
performing network for each province was determined
according to error assessment criteria.

The feed-forward neural network with error back-
propagation algorithm is used in this study. As
previously mentioned, this type of network is capable
of approximating all the given functions with any

degree of accuracy. The number of neurons at the
hidden layer is specified by trial and error. Mean
squared error (MSE) is the target function of the model.
Characteristics of the best performing networks in each
province have also been presented in Tables 2, 3 and
4. As can be seen, the input columns in these tables
are tagged with the row number of variables in Table
1. In fact, the large-scale climate parameters for the
base period are inputs to these networks, while the
mean daily temperature, precipitation and wind speed
at the selected synoptic station in the given province
are outputs from them. It should be noted that the
hidden layer activation function was a hyperbolic
tangent type and the output layer was linear in all of
the selected networks, and after data classification
the best per formances of 70 and 30% were
respectively observed during training and testing of
the networks.

Indicates the statistical period for the selected
synoptic stations in all provinces. In all the studied
networks, the appropriate classification was used for
network training and testing. Furthermore, the best
combination of the large-scale climate parameters, as
inputs, was selected to be used for the downscaling
of daily temperature, daily precipitation and daily
wind speed parameters. Tables 2 to 4 present the
structure of the best performing network as well as
the best combination of the large-scale climate inputs
in each province. According to the results, mean
temperature at 2 m, pressure on the Earth surface,
near surface specific humidity, 500 and 850 hPa
geopotential heights and wind speed were found to
be the most effective large-scale climate parameters
used as inputs in all of the selected networks. The
results from Tables 3-5, also, indicate the high
performance of ANN model in downscaling of
temperature rather than precipitation and wind speed.
As can be seen, the mean value for the correlation
coefficient of daily temperature is 0.98 which is higher
than that of daily precipitation (0.73) and daily wind
speed (0.72) parameters, indicating the high accuracy
of the daily temperature downscaling model. Notably,
the studied synoptic station at Mazandaran did not
show a good performance in downscaling of daily
wind speed through all of the studied networks. The
same was also applied to downscaling of daily
precipitation at East Azerbaijan synoptic station.
However, it was concluded that the feed-forward
neural network with error back-propagation algorithm
had a good performance in downscaling of the daily
meteorological parameters at all of the provinces in
Iran.

(2)

variables were studied separately, and the best
performing networks were selected by varying the
number of neurons at the hidden layer, varying the
number of time-lags at the input layer and using the
transfer function and different training. The designed
network should have been evaluated for  its
performance. For this purpose, the correlation
coefficient (ρ) and root mean square error (RMSE)
criteria are used and defined as (ASCE, 2000):

Correlation coefficient (ρ)

Root mean square error (RMSE)

(1)
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CONCLUSION
In this study, the ability of ANN model to downscale
the large-scale climate parameters at Iran provincial
segmentation was evaluated. For this purpose, first a
synoptic station with a suitable statistical period was
selected in each province, and then different networks
were examined using a combination of various inputs.
The inputs were, in fact, the large-scale climate
variables. Moreover, it was found that mean
temperature at 2 m, pressure on the Earth surface, near
surface specific humidity, 500 and 850 hPa geopotential
heights and wind speed were found to be the most
effective large-scale climate parameters as inputs in all
of the selected networks. The obtained results
indicated the high potential of feed-forward neural
network with error back-propagation algorithm for
downscaling of temperature rather than precipitation
and wind speed parameters. Using this network, the
mean correlation coefficient for daily temperature was
0.98, while the mean correlation coefficients for daily
precipitation and daily wind speed were 0.73 and 0.72,
respectively.
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