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ABSTRACT: Land-use spatial allocation is a multi-objective collaborative spatial optimization method
for rational use of the land use. Based on global search capabilities and the information feedback
mechanism of ant colony optimization (ACO), a land-use spatial allocation model (ACO-LA) is
proposed. FirstlyFirst, a construction graph is built for modeling the land-use spatial allocation
problem. SecondlySecond, the behaviors of artificial ants are improved so that the solution can be
foundobtained quickly in the searchingsearch space. Finally, the ant colony generates optimized
solutions by reconciling the conflicts between different planning objectives or by setting the relative
dominance of different land-use types. Our study focuses on Gaoqiao Town of Fuyang City in
Zhejiang Province, China. The model maximizes the land-use suitability and spatial compactness,
and minimizes the cost of changing the land use, based on a variety of constraints, e.g., the optimal
land-use structure and land-use policies. The results suggest that this model can obtain an optimized
land-use spatial pattern from different sets of sub-objective weights and different development
scenarios. With the constraint of the land-use structure, the land-use types can be distributed more
reasonably by different sets of sub-objective weights. In different development scenarios, the model
encourageencourages areas of land-use types in line with the development direction, adapting to
meet different development needs by setting the relative dominance of the different land-use types,
Wdominance, which is added to the component selection probability Pij.

Key words: Land-use spatial allocation, ACO, Construction graph, Solution component,
                       Scenario simulation

INTRODUCTION
The management of land resources can

significantly affect the quality of the environment and
the sustainable development (Aerts et al., 2005; Wang
et al., 2012; Bragagnolo 2013). Land-use spatial
allocation is a spatial optimization undertaken to
improve the land-use efficiency by distributing different
land-use types under the limits of the regional land-
use structure, according to specific planning objectives,
at various spatial and temporal scales (Zhang et al.,
2012). It needs to consider not only numerous spatial
factors, attributes, and constraints, but also multiple

and often conflicting objectives (Chen et al., 2010;
Cao et al., 2011). Therefore, providing an effective
method for decision-makers to determine the effects
and costs of solutions in different scenarios becomes
increasingly important (Loonen et al., 2007).

Many different optimization methods have been
used to deal withsolve land-use spatial allocation
problems. These methods can be classified into three
categories: multi-criteria evaluation evaluation-based
models, mathematical programming models, and
heuristic methods. Multi-cr iteria evaluation
evaluation-based models (Carver et al., 1991; Eastman
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et al., 1998; Feizizadeh et al., 2012) couple multi-criteria
evaluation techniques with GIS to allocating allocate
the most suitable land-use type with the highest
evaluation value to each unit, . these These models
have a drawback when solve solving multi-suitability
problems because they all have nolack a global
objective function to choose select the optimal
solution (Liu et al., 2012). Mathematical programming
models, e.g., the linear programming models (Campbell
et al., 1992; Aerts et al., 2003) and the mixed-integer
programming models (Crohn et al., 1998), require that
all the variables, constraints, and objectives have a
strict mathematical definition; however, land-use
spatial allocation is a complicated geographic process
which that involves a large number of constraints,
complex spatial relationships, and game decision-
making by stakeholders, making it difficult to meet
satisfy the conditions of the mathematical programming
models. Heuristic methods have hardly anyfew
restrictions regarding the formulation of the variables,
constraints, and objectives, and they are able to
provide alternatives for decision-makers based on ,
according to thetheir optimization objectives (Loonen
et al., 2007). In many studies, heuristic algorithms, such
as genetic algorithms (Stewart et al., 2004; Cao et al.,
2011), simulated annealing (Duh et al., 2007; Sante-
Riveira 2008), immune systems (Liu et al., 2011), and
particle swarm optimization (Masoomi et al. 2012; Liu
et al., 2012), have been combined with multi-objective
optimization techniques and can generate diversified
land-use planning solutions under different scenarios,
to provide decision support. These studies have
provided a new approach to solving land-use spatial
allocation problems (Cao et al., 2011).

Ant colony optimization (ACO), which was first
proposed by Dorigo et al. (1992), is used to solve
optimization problems, such as routing problems (Blum
et al., 2005; Lai et al., 2012), scheduling problems
(Rajendran et al., 2004; Deng et al., 2011), and traveling
salesman problems (Dorigo et al., 1997; Bianchi et al.
2002), by simulating ants’ behaviors when selecting
the best route from a food source to their nest. Li et al.
(2009, 2010, 2011, and 2012) introduced improved ant
colony optimization into land-use planning, and their
results suggest that ACO is effective when it is applied
to these problems.

As a spatial optimization problem, land-use spatial
allocation is not easy to model when applying heuristic
methods (Tong et al., 2012). Among other issuess, land-
use spatial allocation is under the guidance of guided
by land-use structure, which is oftfen flexible because
they it is are influenced by the evolution of the planning
region. Under these circumstancesIn this context, a
land-use spatial allocation model based on a global

search capability and the information feedback
mechanism of an ant colony algorithm is proposed in
this paper. The model uses solution components and a
construction graph to modeling land-use spatial
allocation problems, and modifies artificial ants’
behavior for to simulating simulate decision -makers
to generate the optimum solutions. Under a given land-
use structure constraint, the optimum land-use spatial
solution is searched by for using different sets of sub-
objectives. MeanwhileIn addition, to meet the demand
of land use of different regional development directions,
we employ the relative dominance to simulate the area
fluctuation of different land-use types. As a case study,
we applied this model to the creation of land allocation
alternatives in Gaoqiao Town, Zhejiang Province,
China to validate the proposed model.

MATERIALS & METHODS
The study area lies in the north of Fuyang City,

Zhejiang Province, 20 km from Hangzhou, with a total
area of 104.03 square kilometers (Fig. 1). The average
annual precipitation reaches is 1452.5 mm. The territory
is rich in tourism resources and natural resources, and
its economic and social development index ranked 200th

in the national “Top Thousand Towns”, 34th in Zhejiang
Province’s “Top Hundred Towns”, and 8th in
Hangzhou’s “Top Ten Towns.”. The economic
development of the town has also resulted in problems
with the excessive growth expansion of construction
land, extensive land use, and land pollution. In order
tTo achieve the goal of sustainable development, there
is an urgent need to promote the intensive use of land,
and along with the protection of natural resources and
the environment.

The data consist of statistical data and spatial
data, which are summarized in Table 1. Statistical data,
including economic, social, and ecological data, are
employed to determine the optimal land-use structure.
The spatial data comprise an actual land-use map, land
suitability evaluation maps, and restrictive maps,
including a slope map, which are all projected in a
Gauss-Krüger projection, datum and spheroid Xi’an
1980, at the scale of 1: 10000. These maps are converted
into a grid of 166260 cells of 25×25 m.

Table 1. Data for the spatial allocation modeling
Type Data 

Spatial data 
Land suitability evaluation 

maps Land-use map Average 
slope map 

Statistical data 

Economic, social, and 
ecological statistical data, land 

demand of land uses and 
population, demand for food, 

labor and water  
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Fig. 1. Location of the study area

The study area has ten land-use types: cropland,
garden, forest, rural residential areas, town, road, water,
mining, scenic spots, and barren areas. We have
excluded road, water, mining, and scenic spots as they
are usually not convertible. Land suitability evaluation
maps for cropland, garden, forest, rural residential areas,
and town were acquired obtained to determine the most
suitable use of the land units. The suitability for each
land-use type is classified into three four levels: high
suitability, suitable, low suitability, and unsuitable, and
the values of the levels from high to low equal 4, 3, 2,
and 1, respectively.

The decision variable of for land-use spatial
allocation problems is the land-use unit, and its state
is the land-use type, . so Therefore, we call designate
the component, which is the basic unit of solution, the
a combination of a unit and a land-use type. ACO is
used to choose select the land-use type for a unit, that
meanswhich involves selecting a component for the
unit, and then adding the solution component selected,
which consists of the unit and its land-use type, as
chosen by ACO, to the solution under construction
until a complete solution is generated. ACO-LA uses a
construction graph, a complete weighted graph made
up of the components, for modeling the land-use
spatial allocation problems.

Artificial ants build solutions by moving on the
construction graph and selecting components for the
solution according to the component selection
mechanism (Dorigo et al., 2006). After all the ants form
a solution, the ant colony chooses the best of all the
ants’ solutions  on the grounds ofusing an objective
function value. MeanwhileIn addition, the ants update
their artificial pheromones in the light of theusing a
pheromone update mechanism at the end of each
iteration, in order to exchange information and guide

the search of the next iteration (Fig. 2). Through
Through improving the components of the selection
mechanism, the solution selection mechanism, and the
ACO pheromone update mechanism of ACO, the model
becomes more effective in obtaining the optimized
land-use spatial pattern.

Land-use spatial allocation is the procedure of
allocating a suitable land-use type to each land unit
(Zhang et al., 2012), so such that each component (Cij)
of the optimized solution is made up of a land unit (Ui)
and its land-use type (Tj). All these components
constitute the land-use spatial allocation construction
graph GC, and the weight of each solution component
is the heuristic value, which equals the suitability of
land-use type j of land unit i. To allocate the land-use
types, artificial ants sequentially search each unit and
choose a component satisfying all the constraints for
the unit, e.g., they choose C32 for unit 3, which means
indicates unit 3 is used for garden, and add the selected
solution component to the partial solution under
construction until artificial ants traverse all units (Fig.
3). And meanwhileIn addition, they release
pheromones on the components in their solution.

When solving land-use spatial allocation
problems, the artificial ant simulates behaviors of the
decision-maker to in choose choosing land-use types
for each land unit. As mentioned before, when
allocating a land-use type to the units, the artificial
ants have to consider  the attr ibutes and the
neighborhood of the units, so the probability Pij of
components Cij being chosen by the ants is modified
as in Equation 1.

）（P] ）（）（[ ijconstraint CCPCPP ijoodneighbourhijASij ×+=

(1)
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Fig. 2. Block diagram of ACO-LA

Fig. 3. Construction graph and component selection mechanism (N is the ID of the units, and T is the ID of the
land-use type)

where PAS (Cij) is the probability calculation method
of the ant system (Equation 2). Pneighbourhood (Cij) is the
ratio of land-use type j in the eight-neighborhood of
unit i, . the The land-use type of the neighborhood is
determined by the original pattern and optimal pattern
of current iteration if they are changed in the
optimization process . Pconstraint (Cij) equals 0 or 1, as
determined by the constraints (Table 2 & 3). When
unit i can be converted to land-use type j, its value is 1,
and otherwise, it is 0.

where τ ij is the amount of pheromone on
components Cij, ; ηij is the heuristic value of the
components Cij, which equals the suitability of land-
use type j of land unit i, ; and α and β are the parameters
of ACO, which have a significant effect on the ACO
performance of ACO.

Typically, regional land-use has different emphases
because of the different regional development
directions, so that the land-use structure is flexible. In
this case, the areas of the land-use types will fluctuate
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to meet the development needs (the change area is
limited to  †plus or minus 10% of the land-use structure,
for the protection of theto ensure stability). We add
the relative dominance of the different land-use types,
Wdominance, to the component selection probability Pij
(Equation 1) to generate solutions for different
development scenarios (Equation 3).

Each artificial ant represents one possible solution;
the ant colony has to choose the best one by
reconciling the conflicts between multiple objectives.
The three objectives of the land-use spatial allocation
proposed in this paper are to maximize the land
suitability (fsuitability) and spatial compactness (fcompactness),
and minimize the cost (fcost). The objective fsuitability ,,
which is a guide in the land-use spatial allocation, is
employed to make ensure that each area of land is used
for a suitable use when the land is suitable for multiple
uses (Yeh and Li 1998) (Equation 4). The objective
fcompactness encourages land units with the same use type
to assemble in a cluster (Aerts et al., 2003) (Equation
5). The objective fcost is to minimize the cost of changing
the land use. We adopted the unchanged rate, the
percentage of unchanged units in all units, which
indirectly measuring measures the cost caused by the
land-use type conversion, which is difficult to quantify
(Equation 6). Objective fsuitability and objective fcompactness
are normalized within the range [0, 1] using Equation 7.
We employ a weighting method to deal with  address
the multiple objectives (Equation 8).

where k is the ID of the ants, i is the ID of the unit, n is
the count of the units, and Sij is the suitability of land-

Table 2. Land-use structure

Land-use 
type Cropland Garden Forest 

Rural 
residential 

areas 
Town Barren Others 

ID 1 2 3 4 5 6 7 
Area 1675.05 634.39 6662.96 773.49 233.69 26.73 401.58 

Land units 
count 26758 10134 106437 12356 3733 427 6415 

  Table 3. The constraints of the land-use spatial allocation

ID Constraints 

1  The preservation of basic farmland: cropland in the basic farmland areas should not 
to be converted to other land-use types 

2  The policy of grain for green: return cropland of which the slope is more than 25 
degrees to forest 

3  Prohibit abandonment: no land-use types should be converted  to barren land 
4  Town, road, water, mining, and scenic spots are not convertible 
5  The expansion of a town shall be within the boundaries of the construction area 

7  Area constraint: the areas of the land-use types must meet the area of the land-use 
structure constraint 

 

∑
=

=
n

1i
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use type j of land unit i.

where j is the ID of the land-use type, and m is the
count of the land-use types.

where nunchanged is the count of the units that did not
change their use.

where WS, WC, and WU are the weights of the three
objectives, respectively.

After all the ants have constructed their solutions,
the pheromone intensity of each component is updated
at the end of each iteration, according to the following
mechanism (Equations 9 and 10). First, the pheromone
intensity will evaporate at a certain rate (ρ), and then
the pheromone intensity of component Cij will increase
if Cij is in the solution. During the optimization process,
the more pheromone that is present on Cij, the more
likely Cij is choosed chosen by ants (Equation 2).

ncost
unchanged(k)f n= (6)

）-（)/N-(NN minmaxminnorm NN= (7)

(8)

(9)ijijij ）-1（ ττρτ ∆+←
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where fk is the objective function value of ant k.

RESULTS & DISCUSSION
The proposed land-use spatial allocation model

based on ACO was employed to optimize the land-use
spatial allocation pattern of the study area. The
parameter values of the model are listed in Table 4.

 As the optimization objectives may conflict with one
another, we can generate the optimum solutions by
setting objective weights of the objectives to
emphasize different objectives (Liu et al., 2012). Table
5 lists the different weights we applied to the three
objectives. For example, options 1, 2, and 3 are a single-
objective optimization that, only maximizes the land-use
suitability or spatial compactness, or minimizes the cost
of changing the land use. For options 4–7, the
combinations are 1:1:1, 2:1:1, 1:2:1, and 1:1:2. The results
in Table 6 indicate that different sets of objective weights
have provide the best performance in reconciling the
conflicts between the three objectives. Options 1–3
consider only one objective, and the optimum pattern is
unreasonable. Options 4–7 get obtain the optimal
pattern by considering the trade-off between suitability,
compactness, and conversion cost.

The economic development of the study area has
led to unreasonable land use. We need to emphasize
the suitability objective, so option 5 is more in line
with the development of the region. Fig. 4 shows the
overlay results of the optimal patterns of option 5 (Fig.
4-b) and the actual land-use map (Fig. 4-a). A total of
7.09% of the units are concentrated in the marginal
areas of the land-use clusters, and regions A, B, C, and
D have changed uses (Fig. 4-c). Units in the margins
of the land-use clusters have changed because of the
multi-suitability for multiple land uses and the
neighborhood (Fig. 5-1). Region A is located in the
northern mountainous area with lots ofabundant forest,
small rural settlements, and arable land, and the
converted units are mainly farmland distributed in on
the slopes more than 25 degrees, which are converted
to forest (Fig. 5-2). Region B is located in the plains of
the western mountains, the main area of cropland and
gardens. In this region, some forest in good condition
is converted to cropland and garden (Fig. 5-3). Region
C is located in the southern plains, like region B, and
rural settlements, cropland, and garden are the main
land-use types in this area. Here, some scattered
settlements are converted into cropland, garden, and
other land-use types, and some cropland, garden, and
forest land-use types around settlements are also
converted to settlements. At the same time, a small
amount of forest with good conditions is converted to
cropland and garden (Fig. 5-4). Region D is Gaoqiao
Town, and the town increases through internal
transformation and external expansion to meet the
needs of the urban development. Villages in the town,
some settlements, and other land units surrounding
the town are converted to construction land (Fig. 5-5).
The parameter settings for ACO, including the number
of ants M, α ,, β, and ρ, will affect the performance of
the algorithm, even for the same problem with different
data. The optimal parameter settings need a number of
experiments to determine the values.

As shown in Fig. 6, the objective function value
increases when the number of ants increases from 5 to
35, and then remains basically stable. The pheromone
intensities of the components are equalized when an
excessive number of ants is are used, and that leads to
more time being required to find the optimal solution.
In the experiment, when M=35, the value of the
objective function reaches a maximum.

The parameters α and β will affect the component
selection probability. Parameter α is a thereaction of
the influence of the pheromone intensity on the
component selection; . the The greater its the value of
this parameter, the more likely it is that components
which that have been chosen before will be selected,
but the searching randomness of ACO-LA will

Table 4. The parameter values of the model
M α β ρ 
35 1 1 0.5 

Table 5. Different sets of objective weights

Option WS WC WU 
1 1.00 0.00 0.00 
2 0.00 1.00 0.00 
3 0.00 0.00 1.00 
4 0.34 0.33 0.33 
5 0.50 0.25 0.25 
6 0.25 0.50 0.25 
7 0.25 0.25 0.50 

Table 6. Values of the objectives with respect to
different sets of objective weights

Option fsuitability fcompactness fcost f 
1 0.8623 0.3241 0.9123 0.8623 
2 0.7422 0.4235 0.9087 0.4235 
3 0.7456 0.3306 0.9427 0.9427 
4 0.7841 0.3793 0.9397 0.701864 
5 0.8238 0.3656 0.9291 0.735575 
6 0.8174 0.3907 0.9247 0.630875 
7 0.8168 0.3746 0.9386 0.76715 
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Fig. 4. Overlay result: (a) The actual land-use map; (b) the optimal land-use spatial patterns obtained in
weighted option 5; and (c) the distribution of the changed units

Fig. 5.Changed units in the different areas

decrease. Conversely, if the value is too small, the
algorithm is easily trapped at a local optimum. While
Though parameter β is a the reaction of the influence
of the heuristic value on the component selection, the
role of certainties are more powerful in component
selection when β is increased, but,

Fig. 6. Influence of the number of ants on the objective function value

meanwhilesimultaneously, the randomness of the
search is reduced, resulting in a local optimum. As
shown in Fig. 7 in the form of a surface plot (Liu et al.,
2012), when α=1 and β=1, the value of the objective
function reaches a maximum.
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The parameter ρ will affect the global search ability
and convergence speed of the algorithm. When ρ<0.5,
the performance of ACO-LA improves as the value
increases, but when ρ > 0.5, as the value increases
further, the remaining pheromone intensity of each
component decreases. Consequently, the speed of the
convergence is increased, but the global search
capability is weakened, and the algorithm is more likely
to fall into a local optimum. When ρ = 0.5, good results
have beenare achieved (Fig. 8).

To obtain the optimized land-use spatial pattern
of different regional development directions, Table 7
lists five development scenarios by that involve setting
the relative dominance of the different land-use types,
according to equation 3. Scenario A is a balanced
development with all the relative dominance values
equal to 0.2. Scenario B is the development of cropland
protection, and the relative dominance of cropland is
0.4, and the relative dominance of other others land-
use types are is 0.15. Scenario C is eco-development,

Fig. 7. Influence of α and β on the objective function
value

Fig. 8. Influence of ρ on the objective function value

and the relative dominance of cropland is 0.2, garden
and forest are 0.3, and the other land-use typess are
0.1. Scenario D is the development of rural construction,
in which the relative dominance of cropland and rural
residential areas is 0.35. Scenario E is urban-–rural
integration development, and the relative dominance
of rural residential areas and towns is 0.35.

Table 8 lists the statistics of the optimal land-use
spatial patterns (Fig. 9) obtained in the different
development scenarios. The number of units increases
with the relative dominance. This is because a greater
relative dominance makes results in the corresponding
component being more likely to be selected by the
ants. Therefore, adjusting the relative dominance of
the land-use types is a means of influencing the
component selection, and has an important impact on
generating alternatives.

We selected five typical regions to compare the
land-use spatial patterns obtained in the different
development scenarios (Fig. 10). We can see that the

Table 7. Different development scenarios
Scenarios Cropland Garden Forest Rural residential areas Town 

A 0.2 0.2 0.2 0.2 0.2 
B 0.4 0.15 0.15 0.15 0.15 
C 0.2 0.3 0.3 0.1 0.1 
D 0.35 0.1 0.1 0.35 0.1 
E 0.1 0.1 0.1 0.35 0.35 

 Table 8. Statistics of the optimal land-use spatial patterns obtained in the different development scenarios

scena
rios Cropland Garden Forest 

Rural 
residential 

areas 
Town WS WC WU f( 0.34/0.33 

/0.33) 

A   26357 10343 106937 12356 3733 0.7834 0.7747 0.9182 0.852007 
B  27438 10135 106784 11832 3537 0.7794 0.7793 0.9164 0.852165 
C  26874 11358 107329 10536 3629 0.7941 0.7763 0.9207 0.856173 
D  27135 10145 105273 13597 3576 0.7752 0.776 0.9135 0.849648 
E  25536 10626 106012 13479 4073 0.7869 0.7757 0.9215 0.853527 
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Fig. 9. The optimal patterns obtained in the different development scenarios

Fig. 10. Changed units in the different development scenarios

Table 9. Different settings of the relative dominance for cropland

ID Relative dominance of cropland Cropland units count 

1 0.1 26295 
2 0.2 26593 
3 0.3 26742 
4 0.4 26918 
5 0.5 27322 
6 0.6 27487 
7 0.7 27452 
8 0.8 27466 
9 0.9 27453 

10 1 27446 
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units located in the margins of cluster areas have more
choices, because of the multi-suitability and the
neighborhood, and the land use with a greater relative
dominance is more likely to be allocated to these units.
In order tTo analyze the impact of the dominance on
the numbers of the different land-use types, we
gradually increase the relative dominance of cropland
while the others are kept unchanged (equal to 0.1). As
shown in Table 9, with the increase in cropland
dominance, the number of cropland units gradually
increases, until the dominance of cropland is increased
to 0.6, where the number stabilizes. There are two
reasons for this. Firstly,: the area constraints. Secondly,
and the impact of the suitability and the neighborhood.
The amount of land suitable for cropland is limited,
and at the same time not all the units suitable for
cropland are converted to arable land at the same time,
because because of the neighborhood. It follows that
the increased dominance will lead to the number of
units of the corresponding land-use type gradually
increasing until it is close to the area constraint or the
number of cells defined by the suitability and
neighborhood.

CONCLUSIONS
Land-use spatial allocation is a complex composite

geographic process, and the traditional mathematical
models have difficulty in resolving such problems. The
introduction of heuristic algorithms for such problems
has brought aboutgenerated new ideas. This paper
presents a land-use spatial allocation model based on
modified ant colony optimization. The modifications
comprise include the use of a construction graph for
the land-use spatial allocation problems, and an
improved component selection mechanism, solution
selection mechanism, and pheromone update
mechanism for ACO.

Our study focuses on Gaoqiao Town, with 166260
cells, and employs three objectives: maximization of
the land-use suitability, maximization of and spatial
compactness, and minimization of the cost of changing
the land use, based on a variety of constraints, to obtain
the optimal land-use spatial pattern. As the results of
the land-use spatial allocation showdemonstrate, the
relative weights of 2:1:1 for three sub-objectives is are
adopted for the study area, and the changed units,
accounting for 7.09% of the total area, are mainly
distributed in the marginal areas of the land-use
clusters and 4 regions for increasing objective function
value and constraints. The optimal algorithm parameter
settings, M=35, α=1, β=1 and ρ = 0.5, are determined
after many tests. And tThe proposed model can then
efficiently and effectively find determine the optimal
solutions with different sets of relative dominance for

different development scenarios. When the gradually
increase the relative dominance of cropland is
gradually increased, we find that the number of
cropland units gradually increases and reaches the limit
caused by the area constraints, the impact of the
suitability and the neighborhood.

In this paper, we take suitability as the heuristic
value of for ACO, and the optimization results of the
model are dependent on the accuracy of the land
suitability evaluation. Therefore, any future work
should focus on the setting of the heuristic value, and
employing more additional economic, social, and
environmental objectives and constraints.

ACKNOWLEDGEMENTS
We sincerely thank our colleagues and the

anonymous reviewers for their discussions and
suggestions. This work was supported in part by the a
comprehensive Comprehensive evaluation Evaluation
technology Technology research Research of rural
Rural regional Regional development Development
(Grant No. 2012BAJ22B02).

REFERENCES
Aerts, J. C. J. H., Eisinger, E., Heuvelink, G. B. M. and.
Stewart, T. J. (2003). Using linear integer programming for
multi-site land-use allocation. Geographical Analysis, 35 (2),
148-169.

Aerts, J. C. J. H., Herwijnen, G. B. M. and Stewart, T. J.
(2003). Using simulated annealing and spatial goal
programming for solving a multi site land use allocation
problem. In Evolutionary Multi-Criterion Optimization,
Proceedings, edited by C. M. Fonseca, P. J. Fleming, E.
Zitzler, K. Deb and L. Thiele, 448-463. Berlin: Springer-
Verlag Berlin.

Aerts, J., Herwijnen, M. V., Janssen, R. and Stewart, T. J.
(2005). Evaluating Spatial Design Techniques for Solving
Land-use Allocation Problems. Journal of Environmental
Planning and Management, 48 (1), 121-142.

Bianchi, L., Gambardella, L.  and Dorigo, M.  (2002). An
Ant Colony Optimization Approach to the Probabilistic
Traveling Salesman Problem. In Parallel Problem Solving
from Nature — PPSN VII, edited by JuanJuliánMerelo
Guervós, Panagiotis Adamidis, Hans-Georg Beyer, Hans-
Paul Schwefel and José-Luis Fernández-Villacañas, 883-892.
Springer Berlin Heidelberg.

Blum, C. (2005). Beam-ACO—hybridizing ant colony
optimization with beam search: an application to open shop
scheduling. Computers & Operations Research, 32 (6), 1565-
1591.

Bragagnolo, C. and Geneletti, D. (2013). Dealing with land
use decisions in uncertain contexts: a method to support
Strategic Environmental Assessment of spatial plans.
Journal of Environmental Planning and Management, 1,
50-77.



1125

Campbell, J. C., Radke, J., Gless, J. T. and Wirtshafter,
R. M. (1992). An application of linear-programming
and geograph ic in format ion-systems –  cropland
allocation in antigua. Environment and Planning, 24
(4), 535-549.

Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L. and Chen, J. F.
(2011). Spatial multi-objective land use optimization:
extensions to the non-dominated sorting genetic algorithm-
II. International Journal of Geographical Information Science,
25 (12), 1949-1969.

Carver, S. J. (1991). Integrating multi-criteria evaluation
with geographical information systems. International
Journal of Geographical Information Systems, 5 (3), 321-
339.

Chen, Y. M., Li, X., Liu, X. P., and Liu, Y. L. (2010).
An agen t-based model for  opt imal land allocat ion
(AgentLA) with a contiguity constraint. International
Journal of Geographical Information Science, 24 (8),
1269-1288.

Crohn, D. M. and Thomas, A. C. (1998). Mixed-integer
programming approach for designing land application
systems at a regional scale. Journal of Environmental
Engineering-Asce, 124 (2), 170-177.

Deng, G. F. and Lin, W. T. (2011). Ant colony optimization-
based algorithm for airline crew scheduling problem. Expert
Systems with Applications, 38 (5), 5787-5793.

Dorigo,  M.  (1992).  Optimizat ion ,  Lear n ing and
Natural Algorithms. Ph.D.  Thesis ,  Politecn ico di
Milano, Italy.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony
system: A cooperative learning approach to the traveling
salesman problem. Evolutionary Computation, IEEE
Transactions, 1 (1), 53-66.

Dorigo, M. and Stu¨tzle, T. (2004). The Ant Colony
Optimization Metaheuristic. In Ant Colony Optimization,
edited by Marco Dorigo and Thomas Stu¨ tzle, 25-63.
London: The MIT Press.

Duh, J. D. and Brown, D. G. (2007). Knowledge-informed
Pareto simulated annealing for multi-objective spatial
allocation. Computers Environment and Urban Systems no.
31 (3), 253-281.

Eastman, J. R., Jiang, H. and Toledano, J. (1998). Multi-
criteria and multi-objective decision making for land allocation
using GIS. In Multicriteria Analysis for Land-Use
Management, edited by Euro Beinat and Peter Nijkamp,
227-251. Springer Netherlands.

Feizizadeh, B. and Blaschke, T. (2012). Land suitability
analysis for Tabriz County, Iran: a multi-criteria evaluation
approach using GIS. Journal of Environmental Planning and
Management, 56 (1), 1-23.

Lai, M. Y. and Tong, X. J. (2012). A metaheuristic method
for vehicle routing problem based on improved ant colony
optimization and tabu search. Journal of Industrial and
Management Optimization, 8 (2), 469-484.

Li, X., He, J. Q. and Liu, X. P. (2009). Ant intelligence for
solving optimal path-covering problems with multi-
objectives. International Journal of Geographical
Information Science, 23 (7), 839-857.

Li, X., He, J. Q. and Liu, X. P. (2009). Intelligent GIS
for solving high-dimensional site selection problems
using ant colony optimization techniques. International
Journal of Geographical Information Science, 23 (4),
399-416.

Li, X., Lao, C. H., Liu, X. P. and Chen, Y. M. (2011).
Coupling urban cellular automata with ant colony
optimization for zoning protected natural areas under a
changing landscape. International Journal of Geographical
Information Science, 25 (4), 575-593.

Liu, X. P., Li, X., Tan, Z. Z. and Chen, Y. M. (2011). Zoning
farmland protection under spatial constraints by integrating
remote sensing, GIS and artificial immune systems.
International Journal of Geographical Information Science,
25 (11), 1829-1848.

Liu, X. P., Li, X., Shi, X., Huang, K. N. and Liu, Y. L.
(2012). A multi-type ant colony optimization (MACO)
method for optimal land use allocation in large areas.
International Journal of Geographical Information Science,
26 (7), 1325-1343.

Liu, X. P., Lao, C. H. Li, X., Liu, Y. L. and Chen, Y. M.
(2012). An integrated approach of remote sensing, GIS and
swarm intelligence for zoning protected ecological areas.
Landscape Ecology, 27 (3), 447-463.

Liu, Y. L., Liu, D. F., Liu, Y. F., He, J. H., Jiao, L. M., Chen,
Y. Y. and Hong, X. F.  (2012). Rural land use spatial allocation
in the semiarid loess hilly area in China: Using a Particle
Swarm Optimization model equipped with multi-objective
optimization techniques. Science China-Earth Sciences, 55
(7), 1166-1177.

Loonen, W., Heuberger, P. and Kuijpers-Linde, M. (2007).
Spatial Optimisation in Land-Use Allocation Problems. In
Modelling Land-Use Change, edited by Eric Koomen, John
Stillwell, Aldrik Bakema and HenkJ Scholten, 147-165.
Springer Netherlands.

Masoomi, Z., Mesgari, M. S. and Hamrah, M. (2012).
Allocation of urban land uses by Multi-Objective Particle
Swarm Optimization algorithm. International Journal of
Geographical Information Science, 27 (3), 542-566.

Rajendran, C. and Ziegler, H. (2004). Ant-colony algorithms
for permutation flowshop scheduling to minimize makespan/
total flowtime of jobs. European Journal of Operational
Research, 155 (2), 426-438.

Sante-Riveira, I., Boullon-Magan, M., Crecente-Maseda, R.
and Miranda-Barros, D.  (2008). Algorithm based on
simulated annealing for land-use allocation. Computers &
Geosciences, 34 (3), 259-268.

Stewart, T. J., Janssen, R. and van Herwijnen, M. (2004). A
genetic algorithm approach to multiobjective land use
planning. Computers & Operations Research, 31 (14), 2293-
2313.

Int. J. Environ. Res., 8(4):1115-1126, Autumn 2014



1126

Tong, D. Q. and Murray, A. T. (2012). Spatial Optimization
in Geography. Annals of the Association of American
Geographers, 102 (6), 1290-1309.

Wang, J., Chen, Y. Q., Shao, X. M., Zhang, Y. Y. and Cao, Y.
G. (2012). Land-use changes and policy dimension driving
forces in China: Present, trend and future. Land Use Policy,
29 (4), 737-749.

Yeh, A. G. and Li, X. I. A. (1998). Sustainable land
development model for rapid growth areas using GIS.
International Journal of Geographical Information Science,
12 (2), 169-189.

Zhang, Y., Zhang, H. Q., Ni, D. Y. and Song, W. (2012).
Agricultural land use optimal allocation system in developing
area: Application to Yili watershed, Xinjiang Region. Chinese
Geographical Science, 22 (2), 232-244.

A Land-use Spatial Allocation Model




