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ABSTRACT: This study investigates the effectiveness of the Kriging interpolation model and the Emission
Weighted Proximity Model (EWPM) in assessing relative exposure risk of air pollution using results from the
American Meteorological Society/EPA Regulatory Model (AERMOD) as benchmarks. We used simulated
exposure risk to SO2 in the Dallas area in Texas in this evaluation. Results suggest that the relative exposure
risks to SO2 at different locations in the study area as estimated by EWMP are closer to estimated risks from
AERMOD when compared with the results calculated by Kriging. In addition, study results also indicate that
the relative exposure risks calculated by Kriging are similar to those from AERMOD when the density of
emission sources in the area in question is high. It is therefore concluded that relative exposure risks determined
by both the Kriging interpolation method and the EWPM are acceptable when it is not possible to use
AERMOD. In situations when the density of emission sources is low in the study area, EWPM is a better
choice than Kriging.
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INTRODUCTION
Human population has been increasing at a

significant rate since the beginning of the nineteenth
century. As human population increases, so does its
demands on various resources. Currently, human
demand for potable water, food, clean air, energy, and
manufactured goods as well as the requirement for
habitable land are expanding. Similarly, increase in
human population across the world has resulted in the
need for more land for liquid and solid waste disposal.
Unfortunately, with this expansion comes with increase
in the amounts of pollutants that are released into the
environment. Today, more and more people including
children are exposed to pollutants in the environments
(Bearer 1995; Ahmed et al., 2009; Rehman et al., 2009).

Interactions with polluted environments (e.g. air
pollution) can have an adverse impact on human health.
In fact, pollution has created significant health problems
in some less developed countries (Krzyzanowski et al.,
2002; Halek et al., 2010). To establish a relationship
between air pollution and health effects, researchers

sometimes have to rely on exposure assessment
models to assess exposure risk to a pollutant (Waller
et al., 1999; Ryan et al., 2007; Silverman et al., 2007;
Zou et al., 2009a; Sadashiva Murthy et al,. 2009; Salehi
et al., 2010). When facing the choices of different
models, researchers have to identify effective models
to conduct exposure assessments that more closely
reflect reality. Currently, various groups of models for
assessing a location’s exposure risk have been
developed, including proximity models (Maheswaran
and Elliot 2003; Brender et al., 2008), air dispersion
models (Rogers et al., 2000; Bellander et al., 2001),
and geo-statistical models (Mulholland 1998; Jerrett
et al., 2005a). Previous studies indicated that among
existing exposure assessment models, the American
Meteorological Society/EPA Regulatory Model
(AERMOD) is generally considered to be one of the
most robust and reliable models with acceptable
accuracy for  simulating ambient exposure
concentrations (Cimorelli et al., 2005; Bhaskar et al.,
2008; Zhang et al., 2008; Zou et al., 2009b).
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However, few researchers in less developed countries
can employ AERMOD in their studies due to two
reasons. First, AERMOD is computationally very
intensive and thus can only be used in small geographic
areas with a few polluting sources. For environmental
health research that typically involves analysis across
large geographic areas over a number of years, it is
simply not practical to employ the AERMOD model in
less developed countries because of the computational
time needed. Second, AERMOD has significant input
data requirements and few researchers in those
countries have the required data to run the model.
Therefore, there is a need to identify a practical model
that can be used by researchers who simply do not
have the resources to run AERMOD.

Other models that are easily implemented and
readily accessible to researchers include the Kriging
interpolation model (Mulholland 1998; Jerrett et al.,
2005b; Leem et al., 2006) and a recently proposed model
called the Emission Weighted Proximity Model (EWPM)
(Zou et al., 2009b). The Kriging and EWPM models
are significantly less computationally intensive, and
they require far less data input. However, these two
models have not been evaluated in terms of robustness
and reliability as it has been the case for AERMOD.
The purpose of this paper is to examine whether the
widely used Kriging interpolation model and the
recently developed EWPM are effective methods for
assessing relative exposure risk of air pollution in a
large geographic area. We used results from AERMOD
as a benchmark to evaluate the effectiveness of a
Kriging interpolation model and the EWPM. We believe
that results from this study will be useful to researchers
in environmental health who are interested in
environmental exposure assessment of air pollution
across a large geographic area. The findings will be
particularly useful to researchers working on
environmental exposure assessment of air pollution in
less developed countries where computing resources
are limited and the data required to run AERMOD are
not available.

Because of the fundamental differences between
the AERMOD model and the other two models, we
only compare the relative exposure risk determined by
these models. By relative risk we mean the ratio
between the r isk values (e.g. air  pollution
concentrations) at a specific location (i.e. a receptor
location) calculated by using each of the three models
and the corresponding average of these risk values at
all locations of the receptors in the area in question. In
some environmental health research related analysis,
it is important to use relative exposure risk assessment
to distinguish different population groups exposed to
different levels of risk.

MATERIALS & METHODS
AERMOD is a state-of-the-art dispersion model

developed by the American Meteorological Society
(AMS) and the U. S. Environmental Protection Agency
(EPA) Regulatory Model Improvement Committee
(AERMIC). As a near field steady-state plume model,
AERMOD can simulate short-range (less than 50 km)
pollutant dispersion based on planetary boundary
layer turbulence structures and scaling concepts
(Cimorelli et al. 2003; Holmes and Morawska 2006). The
model was recommended as the regulatory model by
the U.S. EPA on December 9, 2006 (Holmes et al., 2006).
Perry et al., (1994) and Cimorelli et al. (1996, 2003, and
2005) provided detailed summaries and discussions
about the principles and formulations of AERMOD.

To date, there have been many studies about the
performance of AERMOD, including assessments of
the accuracy and uncertainty of the model (McHugh
et al., 1999; Perry et al., 2005; Hanna et al., 2007), tests
of its sensitivity (Kesarkar et al., 2007; Isakov et al.,
2007), as well as evaluations at different temporal scales
(i.e. 1-hour, 3-hour, 8-hour, monthly, and annual)
(Venkatram et al., 2004; Perry et al., 2005; Zou et al.,
2010). One interesting result from these studies is that
AERMOD performs much better in predicting ambient
exposure concentrations at long-term (i.e. monthly and
annual) temporal scales than medium-(i.e. daily) and
short-term temporal scales (i.e. 1-hour; 3-hour) (Zou et
al., 2010). This result means that simulated ambient
concentrations from AERMOD at monthly and annual
scales are perhaps the best possible pollution indictors
of individual exposure risk estimates at a given location.
Kriging interpolation model is perhaps the most
commonly used geo-statistical technique in air
pollution modeling (Jerrett et al., 2001). The Kriging
interpolation model is known for supplying the best
linear unbiased estimate of the level of air pollution
(e.g. ambient air pollution concentration) at any given
location in an area (Burrough and McDonnel 1998).
Unlike other exposure models or interpolation
techniques, Kriging predicts the level of air pollution
at unmonitored locations from observational data at
known locations and provides Kriging variance at
unmonitored locations, which could give an accuracy
assessment for the predictions. The general equations
of Kriging can be expressed as shown in formula (1).

∑
=

=
n
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where )(ˆ 0xZ is the best linear unbiased estimator of
)( 0xZ based on the value of a random field )( ixZ  at

unmonitored location 0x ; and )( 0xwi is the weight value.
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Several studies have employed Kriging to assess
individual exposure risk in epidemiological studies. For
example, Mulholland (1998) employed a universal
Kriging technique to analyze the spatial-temporal
distributions of ozone in the Atlanta metropolitan area,
and found a significantly positive association between
individual ozone exposure and asthma. Similarly, Jerrett
et al. (2005b) produced a continuous particulate air
pollution surface using the Kriging technique based
upon air pollution data from 23 fixed-site monitoring
observations, and found positive associations between
particulate exposure and premature mortality in a small
area of Hamilton, Canada. Leem et al. (2006) used an
ordinary block Kriging method to predict pollutant
levels for each ‘dong’ from the observational pollutant
levels at 27 monitoring sites, and found the relationship
between air pollution and preterm delivery during the
third trimester of pregnancy.

The main advantage of Kriging models over
AERMOD is that, Kriging requires only air pollution
concentrations data at some known locations within
the area under consideration to simulate pollution
levels for all the unknown locations. The models can
be easily implemented within the current GIS
environments such as ArcGIS. However, unlike
AERMOD, the performance of the Kriging model in
simulating pollution levels for unknown locations with
acceptable accuracy has not been conducted.
Therefore, there is a need for a comparative evaluation
to examine whether the Kriging interpolation model
can be used as an alternative measure of exposure risk
when researchers cannot use AERMOD for air
pollution analysis due to the limited computation
resources and/or the lack of data needed to run
AERMOD.

As an improved traditional proximity model,
EWPM computes individual exposure risk by taking
into account the emission rate, the duration of emission
of each emission source, and the total influences of
emission sources around each receptor (Zou et al.,
2009b). Receptors are usually defined before an
exposure risk assessment is conducted. Receptors are
often the locations of individual monitoring sites or
other unmonitored locations in the study area. In the
EWPM, the exposure risk value at a receptor is
calculated by the following formula (2):
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where jiE , and jiT ,  are the emission rate and duration
of emission of emission sources to which the ith

receptor is exposed; jiD ,  is the distance from the ith

receptor to the jth influential emission source. The value
of jiD ,  is set to ‘c’ (a constant value) when the distance
from a receptor to an emission source is less than the
given ‘c’; ‘i’ is the sequential number of receptors;  j is
the number of emission sources affecting the level of
exposure; ‘r’ is the maximum distance of receptors to
an emission source; ‘k’ is the potential influential
distance which is determined by the physical and
photochemistry characteristics of pollutants. The
advantage of EWPM is that it can assess individual
exposure risk with emission data only. However, unlike
AERMOD, the performance of EWPM has not been
examined (Zou et al., 2009b). Therefore, there is also
the need for a comparative evaluation to examine
whether EWPM can be used as an alternative measure
of exposure risk when researchers cannot use
AERMOD for air pollution exposure assessment for
any reason.

To conduct the comparative evaluations stated
above, this study used the three models and sulfur
dioxide (SO2) emission data in 2002 in part of the Dallas-
Fort Worth metropolitan area obtained from U.S. EPA.
Fig. 1 shows the spatial extent of the study area. The
study area encompasses six counties in the Dallas-
Fort Worth metropolitan area with a total land area of
about 13,818.6 square kilometers. The six counties
include Collin, Dallas, Denton, Ellis, Johnson, and
Tarrant with a combined total population of about
5,515,503 in the year 2000. It was estimated that a total
of 52,876 tons of SO2 were emitted in the year 2002 in
the study area. Only point emission sources were used
as data input for all the models. A total of 1,013 point
emissions of SO2 were recorded in 2002.

The overall evaluation consists of five steps. First,
randomly distributed receptors for each county were
set. Second, the concentrations for the receptors were
simulated using AERMOD. Third, the exposure
estimate values for all receptors were calculated with
Kriging and EWPM. Fourth, the exposure estimate
results from the three models were normalized to
exposure intensity indices ranging from 0 to 1.
Furthermore, based on the normalized exposure risk
indices, statistical measures and exposure risk
distribution maps were employed to examine the
performances of Kriging and EWPM using results from
AERMOD as benchmarks. The entire procedure is
described in detail below.

AERMOD model was initialized using the ISC–
AERMOD View 5.90 interface. The point emission
sources extracted from the 2002 U.S. National Emission
Inventory (NEI) were used as pollution source inputs
of the model. The 2002 Integrated Surface Hourly (ISH)
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Fig.1. Point emission sources in Dallas-Fort Worth metropolitan area in 2002

database and Radiosonde database (RAOB), which
were obtained from the U.S. National Climatic Data
Center (NCDC) and the U.S. National Oceanic and
Atmospheric Administration (NOAA), respectively,
were used as input for the AERMOD Meteorological
Processor (AERMET) to calculate the hourly
meteorological parameters (e.g. Monin-Obukhov length
and convective velocity scale) for AERMOD. During
the AERMET run, the Abedo, Bowen Ratio, and Surface
roughness were set to 0.15, 0.60, and 0.50 for Johnson
and Ellis counties, and 0.15, 0.60, and 1.0 for Collin,
Denton, Tarrant, and Dallas counties. These values
are recommended by the guideline of Texas Commission
on Environmental Quality (TCEQ)’s published
AERMOD modeling parameters. The 1º U.S. Geological

Survey (USGS) Digital Elevation Models (DEMs) at
the scale of 1: 250,000 were used as input for AERMOD
Terrain Processor (AERMAP) to assign the terrain
heights of emission sources and receptors. For the
access to all the data stated above, please refer to our
previous work in detail (Zou et al. 2010). The exposure
concentrations for receptors were separately simulated
for each county due to the modeling extent limitation
(less than 50 km from a pollution source) of AERMOD
(Cimorelli et al., 2003).

For the Kriging model, we used a two-step process.
First, we used the ordinary Kriging module in ArcGIS
Software 9.2 to generate a continuous surface of
emission covering the entire study area. Second, we
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extracted the emission values at the locations of the
receptors from the continuous surface and used the
values to represent the emission quantity at the
locations of the receptors.

We followed the following three steps to estimate
exposure risk of each receptor using the EWPM. First,
the distances of each receptor to all the emission
sources within 50 km were calculated. Second, the value
of  ‘ c ’ was set to 0.4 km and all the distances of
receptors to the emission sources that are less than
0.4 km were replaced with this threshold value. Third,
the exposure risk value of each receptor was computed
using formula (2).

According to the principles of the three models for
calculating individual exposure risk, the results from
AERMOD are exposure concentrations with unit ‘µg/
m3’, while the results from Kriging and EWPM are relative
exposure intensities with units ‘g’ and ‘g/km’,
respectively. To make the exposure risk values from these
three different models comparable, the simulated values
from the models were normalized using formula (3).

where iY  is the normalized exposure risk index at
the location of the ith receptor; ix  is the exposure
estimate values or concentrations calculated or predicted
by the respective model; minx  is the minimum value of
the exposure estimates for receptors from the respective
model; and maxx is the corresponding maximum. After
the normalization, a relative exposure risk ranging in
values from 0 to 1 is obtained for each location of a
receptor for all three models.

A statistical evaluation of the normalized exposure
risk indices from Kriging, EWPM, and AERMOD could
provide an illustration of the models’ performances.
Similar to the statistic evaluations of model performance
in previous studies (Olesen 1995; McHugh et al., 1999;
Luhar and Hurley 2003; Perry et al., 2005), this study
used a set of standard statistical measures (including
bias estimate, spearman correlation coefficients,
fractional bias (Fb), index of agreement (IOA) and robust
highest concentration (RHCR)) to evaluate the
performances of Kriging and EWPM relative to the
performance of AERMOD.

Bias estimate is used for measuring the difference
between an estimated value and the true value of a
parameter. In this study the mean of the normalized
exposure risk index from AERMOD is the true value
while the index from Kriging or EWPM is considered
to be the estimated value. The lower the value of the
bias estimate the lower the difference between the true

value and the estimated value. Bias estimate is often
defined as OS − , where S  is the estimated value (in
this study, the mean of the normalized exposure risk
indices from either Kriging or EWPM) and O  is the
true value (in this study, the mean of the normalized
exposure risk indices from AERMOD.

Spearman Correlation is used to establish the
relationship between two variables. In this study, the
relationship is established between the normalized
exposure risk indices from Kriging and AERMOD or
between the normalized exposure risk indices from
EWMP and AERMOD. It is usually defined as

])1/[())((
1 O
n

SnOOSS δδ∑ −−− ,  where S  is the

normalized exposure risk indices from either Kriging or
EWPM ; O  is the normalized exposure risk indices
from AERMOD; sδ  and oδ  are the standard deviations
of exposure risk indices from Kriging or EWPM and
AERMOD, respectively. The values of correlation vary
from -1.0 to 1.0. A negative value indicates inverse linear
relationship between the two variables. A positive value
suggests there is a direct linear relationship between
the two variables. A value of zero (0) indicates no
relationship between the two variables.

Fractional bias is used for measuring the residual
error between an estimated value and the true value of
a parameter. In this study, the true value represents
the normalized exposure risk indices from AERMOD
while the estimated value represents the normalized
exposure risk indices from EWMP or Kriging. It is often
expressed as ))((2 OSOS +− , where S  is the estimated
value (in this study, the mean of the normalized
exposure risk indices from either Kriging or EWPM)
and O  is the true value (in this study, the mean of the
normalized exposure risk indices from AERMOD). The
fractional bias value for an ideal model is zero.

IOA is used to determine the degree to which signs
and magnitudes of two variables are related. The two
variables under consideration in this study are the
exposure risk indices from Kriging or EWPM and the
exposure risk indices from AERMOD. IOA is defined as

]|)O-O|+|O-S(|/O)-(S[-1 22 ], where S  is the
normalized exposure risk indices from either Kriging or
EWPM ; O  is the normalized exposure risk indices from
AERMOD; S  is the mean of the normalized exposure
risk indices from either Kriging or EWPM; and O  is the
mean of the normalized exposure risk indices from
AERMOD. The value of IOA for an ideal model is 1.0
while the theoretical minimum value is 0.0 (which
represents no agreement between the two variables).

)minma x/()m in( xxxixiY −−=
(3)
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RHCR is used for examining whether the ranked
estimated exposure values for a given area simulated by
an exposure assessment model has the same distribution
as the ranked exposure values observed in the area.
RHCR is usually defined as ]2/)13ln[()( −−+ nCCC nn

(Cox and Tikvart 1990), where )(nC  is the nth largest
estimated or truth value, C  is the mean of the n-1 largest
estimated or truth values, n is the number of estimated
or truth values employed to characterize the upper end
of the exposure risk distribution. In this study the
estimated values are the exposure risk indices from
Kriging or EWPM while the true values are the exposure
risk indices from AERMOD, and n is the number of a
quarter of receptors in each county.

RESULTS & DISCUSSION
Fig. 2 is a map illustrating the spatial distribution

of the top 25 percent most risky areas within the study

area generated by the three models. The first map
(Fig. 2a) was generated from the normalized risk
indices simulated by the AERMOD. The second map
(Fig. 2b) was generated from the normalized risk
indices based on simulation results from Kriging. The
third map (Fig. 2c) was produced from the normalized
risk indices from the EWMP. As can be seen from the
three maps, in all six counties in the study area, the
spatial distribution of the top 25 percent most risky
areas within the study area generated by EWPM (Fig.
2c) is similar  to the one generated by AERMOD (Fig.
2a). On the other hand, the spatial distribution of the
top 25 percent most risky areas generated by the
Kriging model ( Fig. 2b) is  different from that of the
one generated by AERMOD (Fig. 2a), both in terms
of the locations of these areas as well as the overall
spatial patterns of these most risky areas.

While these maps give us a general idea about the
relative correctness of the simulated exposure risk from

Fig. 2. Distributions of the top 25 percent of risk areas in Dallas-Fort Worth metropolitan area in 2002
simulated by different models. (a): AERMOD, (b): Kriging, and (c): EWPM
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the three models, they do not provide quantifiable
results measuring the effectiveness of the models.  We
follow the tradition of the atmospheric research
community and use the set of statistical measures
described in the ‘MATERIALS and METHODS’
section of this article to measure the performance of
the three models (Olesen 1995; McHugh et al., 1999;
Luhar and Hurley 2003; Perry et al., 2005). The results
for the statistical analyses in each of the six counties
are presented in Table 1.

As could be seen from Table 1, for Collin County,
Kriging overestimated the exposure risk values with a
mean bias estimate of 0.031 when the AERMOD
normalized mean exposure risk index is used as a
benchmark, whereas EWPM overestimated the
benchmark value by only 0.005. In other words,
overestimation from Kriging is larger than that of the
EWPM. These results indicate that EWPM is a better
surrogate of AERMOD than Kriging. Similar results are

also observed in Denton, Johnson, Ellis, and Dallas
counties. The biases of the means of the normalized
exposure risk indices from Kriging are all higher than
the biases from EWPM when AERMOD values are
used as benchmarks with the exception of Tarrant
County where the bias of the mean of the normalized
exposure risk indices from EWPM is greater than the
corresponding bias from Kriging.

The results from spearman correlation coefficients
(Cor.) of the normalized risk indices are consistent with
the results from the bias estimates. For all six counties,
the normalized risk indices from EWPM show a
stronger correlation with the normalized risk indices
from AERMOD when the correlation value is compared
with that between the normalized risk indices from
Kriging and AERMOD. The correlation values from
the six counties between Kriging and AERMOD range
from -0.191 to 0.378. On the other hand, the correlation
values from the six counties between EWPM and

Table 1. Performance evaluation of Kriging and EWPM in indicating exposure risk estimates in six counties
with AERMOD as benchmark

Study 
site 

Model 
type  

N Mean Bias Cor. Fb IOA RHC R 

AERMOD 0.040 0.000 1.000 0.000 0.000 1.000 
Kriging 0.009 0.031 0.230 1.270 0.071 0.218 Collin  
EWPM 

446 
0.045 0.005 0.889 0.115 0.897 0.968 

AERMOD 0.029 0.000 1.000 0.000 0.000 1.000 
Kriging 0.116 0.087 -0.191 1.200 0.463 1.248 Denton 
EWPM 

399 
0.029 0.000 0.735 0.000 0.684 1.059 

AERMOD 0.047 0.000 1.000 0.000 0.000 1.000 
Kriging 0.070 0.023 0.279 0.393 0.427 0.497 Johnson  
EWPM 

397 
0.069 0.022 0.823 0.378 0.890 1.421 

AERMOD 0.036 0.000 1.000 0.000 0.000 1.000 
Kriging 0.062 0.024 0.378 0.499 0.425 2.733 Ellis 
EWPM 

660 
0.045 0.011 0.688 0.295 0.571 1.471 

AERMOD 0.011 0.000 1.000 0.000 0.000 1.000 
Kriging 0.088 0.076 0.219 1.540 0.121 1.213 Tarrant 
EWPM 

674 
0.127 0.116 0.754 1.671 0.413 1.565 

AERMOD 0.015 0.000 1.000 0.000 0.000 1.000 
Kriging 0.103 0.089 0.112 1.508 0.560 1.165 Dallas 
EWPM 

971 
0.098 0.083 0.787 1.482 0.612 1.495 

 
N is the number of receptors in each county
RHCR

 was used to indicate the top 25 percent of the exposure risk spectrum.
Bias: OS −

Cor.: ])1/[())((
1 O
n

SnOOSS δδ∑ −−−

Fb  : ))((2 OSOS +−

IOA: ]|)O-O|+|O-S(|/O)-(S[-1 22 ]

RHCR: ]2/)13ln[()( −−+ nCCC nn
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AERMOD range from 0.688 to 0.889. These results
further suggest that, when compared to Kriging, results
from EWPM are closer to results from AERMOD.

The results from Fractional Bias (Fb) in Table 1
also show that the mean errors of the normalized risk
indices from Kriging (ranging from 0.393 to 1.508) are
greater than the corresponding ones from EWPM
(ranging from 0.115 to 1.482) in Collin, Denton,
Johnson, Ellis, and Dallas counties when the AERMOD
normalized risk indices are used as benchmarks.
However, in Tarrant County, the value of Fb from
Kriging is 1.540, which is slightly smaller than the value
of Fb (1.671) from EWPM when the AERMOD
normalized risk indices are used as benchmarks.
Overall, these results once again confirm that EWPM
produces results closer to those from AERMOD than
Kriging.

Similar to the results related to the correlation
coefficients discussed above, the results from the index
of agreement (IOA) in Table 1 show that the values of
IOA of the normalized risk indices between EWPM and
AERMOD in all six counties are much higher than the
corresponding ones between Kriging and AERMOD.
The values of IOA between EWPM and AERMOD in
the six counties range from 0.413 to 0.897, while the
corresponding ones between Kriging and AERMOD
vary from 0.121 to 0.560. These results also indicate
that, compared to Kriging, the normalized risk indices
calculated by EWPM are much closer to the ones
generated by AERMOD.

The results from the RHCR analysis of top 25%
exposure risk locations also show that even though
EWPM overestimated or underestimated the RHCR
values for individual counties when using RHCR values
from AERMOD as benchmarks, the RHCR values from
EWPM are closer to the RHCR values from AERMOD
than the corresponding RHCR values from the Kriging
interpolation method. The exceptions are the RHCR
values from Tarrant and Dallas Counties where the
RHCR values for Kriging are closer to the benchmark
RHCR values than the corresponding values of RHCR
for EWPM. Overall, these results once again confirm
that EWPM is a better surrogate for AERMOD than
Kriging.

To summarize, this study evaluated the performance
of Kriging and EWPM in estimating the exposure risk
to SO2 in part of the Dallas-Fort Worth metropolitan
area using results from AERMOD as benchmarks.
Overall, the results indicated that EWPM is a better
surrogate for AERMOD than the Kriging interpolation
method. Bias estimates of the means of the normalized
exposure risk indices from EWPM and Kriging using
the AERMOD normalized exposure risk index as

benchmark values indicated that EWPM performs
better in estimating the average exposure risk in the
study area than Kriging. For the six counties in the
study area, the bias estimates from EWPM in five of
these six counties were lower than the corresponding
bias estimates from Kriging. The only exception was
Tarrant County. In Tarrant County, the bias estimate of
the means of the normalized exposure risk index from
EWPM is higher than the corresponding bias estimate
from Kriging. However, these results could be
attributed to the high density of emission sources in
Tarrant County. Additional research is needed to
further investigate how density of emission sources
would affect the relative performance of the EWPM
and Kriging.

Like many studies, this study also has some
limitations. First, environmental exposure risk is
induced by both point, areal, and linear emission
sources. However, since Kriging and EWPM accept
only point emission sources as input, the study was
conducted using only point emission sources as input
for all the three models (Kriging, EWPM, and AERMOD)
to make the results from the three models comparable.
Second, due to the modeling extent limitation (less than
50 km from emission source) of AERMOD (Cimorelli et
al. 2003), the exposure risks for receptors were
simulated county by county using AERMOD, Kriging,
and EWPM. However, this could result in an under
estimation of exposure levels for receptors located in
areas close to the boundaries of each county. This is
because the exposure risks of receptors near the
borders of one county can be influenced by emission
sources located in a neighboring county.

CONCLUSION
Accurate air pollution exposure risk assessment is

critical for studying the relationships between air
pollution and health outcomes. Due to insufficient air
quality monitoring sites and the high cost of sampling
exposure risks in non-monitored areas, researchers
often rely on exposure models (e.g. air dispersion
models, proximity models, and human intake models)
to assess individual exposure risk at unmonitored sites.
Although several exposure assessment models have
been developed, few of them have been validated in
terms of robustness and reliability. One of the most
robust and reliable models with acceptable accuracy
for simulating ambient exposure concentrations is
AERMOD. However, researchers in less developed
countries do not have the resources to use AERMOD
for their studies covering large geographic areas due
to the computational resource requirements and high
data input demands of the model. This study
investigated the effectiveness of Kriging interpolation
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method and the EWPM for calculating relative exposure
risk of SO2 in the Dallas area in Texas and compared
the results of these two models from those of
AERMOD. The results indicated that EWPM
performed better than the Kriging interpolation
method. However, it was observed that it is possible
that the Kriging interpolation method may perform
better than EWPM when the density of emission
sources in the area in question is high. But additional
studies are needed to verify this possibility. It can
therefore be concluded that, both the EWPM and the
Kriging interpolation methods are acceptable methods
for assessing relative exposure risks of air pollution
when it is not possible to use AERMOD in the area of
interest. When the density of mission sources in the
area in question is low, the EWPM is a preferred model
than the Kriging interpolation method.
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