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ABSTRACT: This paper explores the capabilities of Multi-objective Particle Swarm Optimization algorithm
in a simulation-optimization model for solving waste load allocation problems. The main goals are total
treatment costs, violation of the water quality standards and equity. In this research, the water quality
simulation model is coupled with a multi-objective optimization model, MOPSO. In order to derive non-
dominated solutions, two different optimization models are used. The first is referred to as the cost versus
quality model and the second one also consider minimizing cost and inequity. For the each case, the trade-off
curve (Pareto front) is derived and the best non-dominated solution on the trade-off could be selected by
stakeholders and decision makers. The proposed model has been developed for Haraz River in the northern
part of Iran which represented scenarios considering different interests and answered questions to modify
scenarios according to the decision makers’ideas. Solutions were compared with NSGA-II, and the results
demonstrate a suitable convergence and diversity of proposed algorithm.
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INTRODUCTION

Due to rapid population growth, strong
dependence of living organisms on water, progressive
reduction in available healthy water resources, and
excess wastewater, the planning and monitoring of
water must be performed more accurately and rapidly.
Rivers are one of available water resources that should
find a solution for their waste discharges. In general,
the problem of surface water quality is related to the
development plans in the basins so that stakeholders’
discharge to the rivers without appropriate treatment.
For better water quality management and more
sustainable decision making, one should determine the
treatment levels regarding to the environment,
economic and social aspects under waste load
allocation policy.

Waste Load Allocation (WLA) refers to the
determination of the required pollutant removal (or
treatment level) at different point sources to ensure
that water body standards are maintained throughout
the receiving water body. Optimal waste load allocation
implies that the treatment vector selected not only
maintains the water quality standards, but also results
in the best value for the objective function defined for
the management problem (Burn and Lence 1992). The
waste load allocation can satisfy quality standards in
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the system and simultaneously minimize the costs
imposed to the treatment facilities. Therefore, it
requires multi objective optimization models to find
the best solution. However, in surface water quality
management, water distribution network, reservoir
operation and waste load allocation, the utilization
of simulation-optimization techniques can provide
more efficient plans with expanded capability.(Burn
and Yulianti 2001, Eusuff and Lansey 2003, Rani and
Moreira 2010).

The waste load allocation models are presented
as multi-objective models considering the criteria
of different stakeholders that may contradict each
other, for example, maximizing economic efficiency
and measures of water quality by checking the
violation from the standard of dissolved oxygen.
moreover, minimizing of the total treatment cost and
also increasing equity among the polluters, subject
to limitations on satisfaction of DO standard at all
of the check points along river.(Mujumdar and
Subbarao Vemula 2004, Yandamuri, Srinivasan et al.
2006). Metaheuristic algorithms are among efficient
tools for solving optimization problems that can find
the optimum solution in multi objective problems.
There are several means for solving multi-objective
optimization problems, such as genetic algorithms,
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simulated annealing, tabu search, ant colony, and
others, the genetic algorithms method is most
commonly used to solve waste load allocation
problems. (Yandamuri, Srinivasan et al. 2006,
Saadatpour and Afshar 2007, de Andrade, Mauri et al.
2012). Some previous works were done in this field,
Sasikumar and Mujumdar (1998), proposed a two-
objective fuzzy optimization model in waste load
allocation and called it maximum-minimum model.
Chang, Chen et al. (1997), solved the waste load
problem in the river by combining fuzzy optimization
with genetic algorithm. Mujumdar and Sasikumar
(2002), solved the maximum-minimum model by
combining fuzzy risk in seasonal conditional rivers. In
the form of three two-objective models,Burn and
Yulianti (2001), attempted to model the waste load
allocation problem using genetic algorithm.

Two models were for the design phase and one
model to the operational phase. Using the simulator
model QUAL2K and the genetic algorithm,
Saadatpour and Afshar (2007), addressed the waste
load allocation in uncertain conditions. In their
research, the cost function and the quality standards
for water were considered to be fuzzy values.
Yandamuri, Srinivasan et al. (2006), solved the waste
load allocation problem in the form of two multi-
objective models using genetic algorithm. In the first
model (cost-performance), only the minimization of
violations of quality standard was considered but in
the second model (cost-equity-performance), the
equity index was also included, Mostafavi and Afshar
(2011) optimized the cost-performance model by
including several different wastes.

This study examined the effectiveness of Multi-
Objective Particle Swarm Optimization (MOPSO)
algorithm for solving the waste load allocation problem
where the objectives include minimizing the treatment
cost, violation of the standard and equity. The Streeter-
Phelps (S-P) equation model was used to simulate the
model (Streeter and Phelps 1958), and the water quality
index for Haraz River was the dissolved oxygen in water
at control points. Moreover, no report was found of
MOPSO algorithm to solve WLA problems. MOPSO
was chosen to solve the waste-load allocation problem
because it is easy to implement, easy to use and its
efficiency has been empirically proven in some previous
studies in different areas.(Coello, Pulido et al. 2004,
Goudos and Sahalos 2006, Durillo, Garcia-Nieto et al.
2009, Nikoo, Kerachian et al. 2012)

MATERIALS & METHODS

In fact, the optimization problem was to find a
solution or solutions on a set of feasible alternatives
(respecting the problem constraints) with an aim to
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optimize the problem objective. On the other hand,
problems in water resources management often have
a high number of decision variables and the
optimization of nonlinear objective functions
sometimes are in conflict with each other. Therefore,
a set of solutions is obtained. The idea of Multi-
objective optimization problem is to find a set of
Pareto (non-recessive) solutions to the problem.
Baltar and Fontane (2008), used MOPSO to solve a
Multi-objective problem and examined its application
in three aspects: solving the test functions for
comparison with other versions of MOPSO and other
algorithms, the multipurpose reservoir operation
problem with four objective functions and also the
quality operation of reservoir due to thermal bedding
with three objective functions.Azadnia and Zahraie
(2010) used the MOPSO optimization algorithm for
the operation of Sefidrud reservoir. The objectives of
this study were to supply downstream needs and
sediment discharge. The study also discussed the need
for finding non-inferior solutions with high diversity
and finding the general optimum appropriate for
particle swarm in the MOPSO algorithm, (Rahimi,
Qaderi et al. 2013), compared the performance of the
MOPSO algorithm and the NSGA-II algorithm in the
reservoir operation of Doroudzan Dam. The
comparison between the MOPSO algorithm results and
the NSGA-II multi-objective genetic algorithm showed
the efficiency of the former in achieving optimum
solutions for the policy of optimum operation for
reservoirs in most months of operation. The proposed
model has been developed for waste load allocation in
Haraz River located in the northern part of Iran. There
are eight main dischargers on this river.

The PSO algorithm was first proposed by
Eberhart and Kennedy in 1995. The PSO Like all other
evolutionary algorithms, begins by creating a random
population of individuals called a group of particles.
Each particle in the group is a set of different unknown
parameters whose optimum values must be determined.
In fact, each particle is a point in the solution space.
The algorithm essence is to search the solution space
based on the movement of the particle group towards
the best position faced in the past, hoping to achieve
a better position. The difference between the PSO and
other evolutionaryalgorithms is in the method in which
the created population moves in the search space. In
the PSO, each population member has an adaptive
velocity that moves in the search space proportionate
with it. In addition, each of them has a memory. That
is, they memorize the best position they achieve in the
search space. Thus, each member moves in two
directions:

1. Towards the best position they are in.
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2. Towards the best position the best member is in.
In other words, each particle in the PSO represents a
feasible solution randomly moving in the problem
space.

Thus, the velocity equation for each particle and
its new position were defined as follows (Reyes-Sierra
and Coello 2006):

V"t =wV ' +c,rand (0,1) (pbest, — X )
T 1)
+c,rand (0,1) (gbest, — X |)

_
P2

X=X+t )

Where,
V" : Velocity of particle i at the new iteration

V,': Particle velocity at the current iteration
X : Particle position in the new iteration

pbest;: The best position that particle i has ever
observed

gbest : The best position of the best particle (the best

position that all particles ever observed)

In the search space, each particle changes
according to the experience and knowledge of itself
and its neighbors. Hence, the position of other particles
in the group affects particle search. The result of
modeling this social behavior is a search process in
which particles tend towards appropriate areas.
Particles in the group learn from each other and go
towards their best neighbors based on the knowledge
gained (Eberhart and Kennedy 1995). & (Coello 1999).

Different criteria are used for solving the waste
load allocation problem. Choosing among these
criteria depends on their importance from the
viewpoint of decision-making authority (Burn and
Yulianti 2001). Among these criteria, one can point
to minimum percent of treatment or in other words
minimizing the total cost, minimum violation of the
standards value, equity index or uniform treatment,
minimization of maximum violation, maximum
capacity in qualitative excess(Niksokhan, Kerachian
et al. 2009). In this study, the minimum treatment
cost criterion, minimum violation of dissolved oxygen
from the standard and equity index. The treatment-
violation cost criteria and treatment-equity cost
criteria were considered as objective functions, and
the optimum solutions are achieved for this two-
objective problem.

The first model was the minimum cost per
treatment per waste production unit for a violation
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of the minimum set standard. This model shows
different values of the optimum cost versus violation
values from the standard value. Based on the obtained
optimum solutions, the decision maker can select one
of the obtained solutions according to constraints. In
this case, the problem constraints were the violation
values calculated by the S-P equation. The model
relations are as follows (Burn and Yulianti 2001):

Min3 C, (x,) 3
Min_NZR:vj (4)
St

X, €XS; Vi (5)
V,=f (xW,QT ,KWQy,) (6)

Where, ¢, is treatment costs for waste source i, X;
is removal percent of waste i, x s, is a set of selective
removal percentages, Ns is the number of point
sources, V, is the difference between qualitative
parameter value and the standard value at control point
J» NR is the number of control points, f is the definition
of quality conditions, a function of hydraulic conditions
and loading in the river, W is waste load of discharger,
Q isdischarge of the river mainstream and its branches,
T iswater temperature, K is response coefficient of the
system and WQ_, is the qualitative standard value in
the river system. Moreover, to determine the violation
value from the qualitative standard:

o
V= 0

Each discharger will bear a certain treatment cost
based on their circumstances, for every degree of
waste removal. Therefore, the treatment cost function
for each discharger treatment can be calculated for any
treatment percent and therefore the total treatment cost
for units is achieved. To estimate the cost function of
dischargers in Haraz River with the system of designed
lagoons, data for costs of construction and operation
of aerated lagoons in some provinces of Iran and in
different counties were collected and analyzed. Cost
functions for discharger are estimated as follows:

Vv, 20
Vv, <0

()

C. =

ax®+bx?+c,x +d, (8)

Wherea, b, ¢, dare given in Table 1.

The above model enters into the MOPSO
optimization algorithm, and among possible modes of
treatment for each source, dominant solutions are
selected. These solutions are obtained as the
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Table 1. Cost Coefficient of dischargers studied. The model is as follows (Burn and Yulianti
2001
. Cost Function Coefficient )
discharger
b c d .
1 1.13 -0.80 016 0.03 :
2 406 325 065 012 Min2 C, (x:) ©)
3 1.71 -1.20 0.25 0.04 ]
4 201  -140 028 005 MInEQ
5 152 -107 022 004 (10)
6 1.23 -0.86 017 0.03 St
7 1.87 -1.32 0.26 0.05 NS [y W
0.45 -0.32 006 0.01 _ i il .
s EQ=27 | vi (11)
=1
treatment percentage allocated to each source versus V, <0 Vi (12)

the qualitative response of river in each control point
using the S-P equations. In the second model, in addition X; €XS; Vi (13)
to reducing treatment costs, the inequity index was also
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Fig. 1. Optimal waste load allocation framework
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Table 2. Characteristics of point sources of Haraz River

Point sources 1 2 3 4 5 6 7 8
distance from
upstream (m) 996 10100 11493 14595 15135 22160 25957 38643
Discharge (m*/s) 0.75 3.251 0.86 1.04 1.616 0.65 0.72 0.302
D'SSO'(‘r’fSII‘;Xyge” 55 58 54 57 7 55 4.6 6.3
BOD (mg/) 3.2 3 4.2 41 2 4 5.5 3
Temperature (°C) 10 11 11 12 12 11 13 13
25 45
2.0 LC ‘ LCMIE LCMIE: Least Costwith
= 3 NVLC: NonVioletion s 40 PS Most Inequity
§’ % with Lest Cost e LIE: Least Inequity
= 15 LC: Least Cost = x
5 % > 35 *
S0 M 3 h
> =
g 05 % NVLC ‘et aey LIE
0.0 .““!ﬂlﬂl—n— 25 ha
0.4 14 24 34 2.5 35 45 55
Total Treatment Cost ($ milion) Total Treatment Cost ($ milion)
Fig. 2. Cost-violation trade off Fig. 3. Cost- Inequity trade off
Table 3. Trade-off curve characteristics
. Removal Fraction of each Discharger
Trade of f Index Pareto solution 1 ’ 3 4 5 5 7 3
Cost- LC (0.43 ,1.86) 043 042 044 043 033 04 04 047
Violation NVLC (2.87,0.00) 093 037 08 086 098 08 0.76 031
Cost- LCMIE (2.88-4.32) 093 037 08 086 098 08 0.76 031
InEquity LIE (4.97-261) 0.73 098 085 093 09 09 098 0.22
Table 4. Waste load allocation scenarios
Scenario 1 2 3 4
Inequity Index 4 3.5 3 2.6
Discharaer Cost Waste load Cost Waste load Cost Waste load Cost Waste load
g (M$) (kg/d) (M$) (kg/d) (M$) (kg/d) (M$) (kg/d)
1 0.17 51.8 0.28 30 0.22 43.7 0.36 28.6
2 0.64 308.4 1.3 164.7 1.7 90.9 2.1 39.3
3 0.55 23.1 0.75 26.6 0.5 29 0.55 34.8
4 0.57 45.3 0.55 20 0.7 15.9 0.69 4.8
5 0.41 31.1 0.35 36.1 0.35 36 0.27 61.2
6 0.35 27.3 0.13 54,2 0.2 57.4 0.26 67.4
7 0.32 44 .9 0.32 67.5 0.45 42.9 0.68 22.4
8 0.02 59.1 0.02 55.6 0.02 59.6 0.02 63.5
' =f xW,QT,KWQ.) Vi (14) source, W, is load of wastes discharged from source

Where, x is mean percentage of treatment, W is
mean waste load discharged from the NS waste

i. Other parameters have already been introduced.
Equation (11) indicates that discharger with high vol-
ume of waste must do more removal. Equation (12)
makes violation of the system impossible. The model
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results indicate that high inequity index is associated
with lower costs in the system. Thus, the decision
maker must select the appropriate option based on
available considerations. In equation (11), the closer
the treatment value in a source to the mean treatment
and the closer the waste value discharged by a source
tothe mean value, the equity index value will be lower.
The proposed optimal waste load allocation model
framework is shown in Fig. 1. It consists of the multi-
objective optimization model, with the water quality
simulation model embedded into it. This framework
can champion both optimization models which speci-
fied in this study.

Eight dischargers in selected reach of Haraz River
were identified as waste sources and entered into the
model. Next, data about point sources entered into the
model are given in Tables 2 (Pejman et al. 2009).

RESULTS & DISCUSSION

The first model for treatment cost-violation of the
standard value ranges from the minimum treatment value
per unit for low costs to a treatment value that no
violation is observed. Ifthe minimum treatment value is
possible, maximum violation of the dissolved standard
oxygen will happen. On the other hand, high costs must
be paid so that there is no violation of the standard
dissolved oxygen. In this model, the decision maker
makes decision based on the cost he will spend and the
violation of its corresponding standard. In fact, each
point in the treatment cost-violation solution curve
would be a solution for the decision maker which is
showed in Fig. 1. In the second model, for the treatment
cost for discharge of each waste source is specified
with an aim to establish balance between different units.
In fact, one can establish different costs for different
levels of the equity index. It is noteworthy that, non-
violation of the standard dissolved oxygen value in the
river path is for the inequity index establishment. As
mentioned, a constraint on the optimization problem
in this model is non-violation of the standard dissolved
oxygen value. Itis clear that for the obtained solutions,

Do Concentration(mg/I)

0 | I | L | ]
c 5 10 18 2C 22 0

Distance(km)

Fig. 5. DO profile for NVLC
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the part ranges from maximum equity against spending
high costs to minimum treatment percentage required
to create a non-violation of standard dissolved oxygen
value (which is equivalent to establishing minimum
equity index). In other words, the more the money spent
in the relevant part, the higher will be the equity
between treatment units. Moreover, according to
obtained charts, it can be said that the LC solution in
Fig. 2 is the same as the solution obtained at the point
non violation with least cost (NVLC) which
corresponds to the minimum cost required for non-
violation of the standard dissolved oxygen value in the
entire path. The leas inequity (LIE) point actually
represents the establishment of maximum equity with
spending more costs and the mean treatment of 87
percent when there is no violation of the standard
dissolved oxygen between treatment units. The details
are given in table 3. Each discharger unit can select its
drain strategy from possible treatment scenarios.
Scenarios are defined based on the total treatment cost
in the system. In this way, scenario 1 is defined with a
cost of M$ 3 and scenarios 2, 3 and 4 with costs of
M$ 3.5, 4, 4.5 in the whole system to allocate waste
load by establishing the lowest inequity between
dischargers. Details about each of these scenarios and
their costs are given in Table 4. Moreover, Fig. 4 shows
a profile of dissolved oxygen in the river length for
the case there is no violation of the standard it
represents dissolved oxygen for the case that industries
without treatment discharge wastewater into the river.
Fig. 5 represents the dissolved oxygen during the river
atthe NVLC case for the cost-violation model and Fig.
6 represents dissolved oxygen during the river for the
case that there is no violation of the standard and shows
the least inequity value between dischargers. As a result
quality of the water river has been improved by
establishing equity in system. In order to evaluate the
performance of MOPSO for waste load allocation
problems, the comparison was accomplished using
MOPSO and Non-dominated Sorting Genetic
Algorithm-11 (NSGA-II). Numerical results that are

Do Concentration(mg/I)

w
in

Distance(km)

Fig. 6. DO profile for LIE
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Fig. 8. Pareto front of MOPSO and NSGA-II on Cost versus Inequity Measure

also compared with NSGA-11 show the advantages of
this approach. Fig.7 shows all non-dominated
solutions achieved by MOPSO, are most optimum in
comparison with the solutions obtained by NSGA-II,
while both algorithm have the same convergence. Fig.8
shows the two algorithms converge to the Pareto
optimal front. MOPSO is considerably better than
NSGAII in terms of Diversity Measure.(Niu, Wang et
al. 2012) NSGA-II has a problem in finding the entire
pareto-optimal front. However, MOPSO performs well,
obtaining non-dominated solutions spread over the
entire regions. It is important to notice the very high
speed of MOPSO, which is almost 8 times faster than
the NSGA-I11 in this problem, this will be remarkable if
we consider the NSGA-II as a “very fast” algorithm
(Coello, Pulido et al. 2004). The results show that the
average computational times in minutes required for
each algorithm run are 1.12 and 8.51, for MOPSO and
NSGA-II, respectively. It may notice that, the total
number of objective function evaluations was set equal
to 7000, 70 population size and 100 iterations for both
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algorithms. Both the algorithms were run at the same
PC an Intel Core i5 at 2.53 GHz with 4-GB RAM.

CONCLUSIONS

In this study, Multi-objective Particle Swarm
Optimization (MOPSO) algorithm was applied to
minimize the pollutant treatment costs in river waste
load allocation in regard to the environmental standard
violation and inequity criteria. There, it was concluded
that this approach can well be used for multi objective
optimization even in comparison with NSGA-11 as a
result MOPSO converges fast to the true optimal
trade-off, and at same time preserves good diversity
along the pareto-optimal front. Also, it is
recommended that the equity levels can be used to have
a fair waste load allocation policy in water basin.
However, the latter may not lead into a more
economical result. Consequently, a waste reallocation
is introduced to achieve more economical results while
the equity is at maximum level. Moreover, this study
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has the potential to be developed by water quality trading
approach to find a more integrated policy making.
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