Development of NiO-Co$_3$O$_4$ nano-ceramic composite materials as novel photocatalysts to degrade organic contaminants present in water

Mohamed Jaffer Sadiq, M.1 and Samson Nesaraj, A.2*

1Department of Nanosciences and Technology, Karunya University, Coimbatore - 641 114, India
2Department of Chemistry, Karunya University, Coimbatore – 641 114, India

Received 7 March 2014; Revised 29 May 2014; Accepted 2 June 2014

ABSTRACT: Novel ceramic oxides have been increasingly focused in recent years because of their potential applications in environmental purification especially to treat organic contaminants present in water. In this research work, a set of NiO-Co$_3$O$_4$ nano-ceramic composite materials were prepared by a simple reflux condensation method using nickel acetate / cobalt acetate as precursor salts, sodium monododecyl sulphate (SDS) as a surfactant and N,N-Dimethylformamide (DMF) as solvent. The prepared nano-ceramic composites were calcined at different temperatures such as 200, 400, 600 and 800°C for 2 hours each to get the phase pure product. XRD results revealed that all the samples indexed to a cubic crystalline geometry. The presence of metal-oxygen bond (Ni-O and Co-O) was confirmed by FTIR spectroscopy. The presence of Ni, Co and O in the sample was confirmed by EDAX analysis. The existence of particles in nanometer range was shown by SEM. The particle size analysis by light scattering method also confirmed the particles in nanometer range (approximately 270 nm) in all the three samples. The optical behavior of the materials was studied by UV-Vis and PL spectrophotometer. Photocatalytic activity studies carried out with NiO-Co$_3$O$_4$ (1.0:1.0) nano-ceramic composites in presence of organic dyes such as, rhodamine B and methyl orange dyes under UV light irradiation (for two hours) resulted in the degradation of 77% and 84% respectively.

Key words: NiO-Co$_3$O$_4$ nano-ceramic, Reflux, Photocatalytic, Degradation, Organic, Dyes, Water

INTRODUCTION

Adequate purification of industrial waste water is a major concern because it may contain hazardous pollutants. Hence, novel waste water treatment technologies are needed to save the environment from pollution. Because of the growth of textile and leather industries, huge amount of toxic waste water is released everyday into the aqueous ecosystem (Park et al., 2003). The polluted waste water contains of variety of pollutants with high concentration and complicated composition. The removal of organic compounds in the industrial waste water is a major concern in ensuring a safe and healthy environment (Gao et al., 2011). It was found that the semiconductor photocatalysts can easily degrade the organic pollutants present in industrial waste water under UV/solar light or visible light irradiation (Kanjwal et al., 2010). Recently, nanostructured transition metal oxide materials were also proposed as effective photocatalysts (Teo et al., 2006). The oxide materials such as, nickel oxide and cobalt oxide are the versatile materials from the transition-metal oxides for any application in normal environment condition (Zav’yalova, et al., 2007). NiO is a p-type semiconductor and wide band gap energy range from 3.4 - 4 eV (Sasi et al., 2007). NiO is studied various groups since it has an excellent durability and electrochemical stability as well due to its good optical, magnetic and electrical characteristics (Bandara et al., 2007). Cobalt oxide is also a p-type semiconductor and it is having a direct energy band gap at 1.5 - 2.0 eV (Wang et al., 2009). It is a spinel crystal structure (Fd3m) and also has excellent magnetic, optical and transport properties (Yamamoto et al., 2002). Both nickel oxide and cobalt oxide were utilized in the diversified areas of industry such as electronic devices (Romana et al., 2006), catalysts (Warang et al., 2012), battery (Lou et al., 2008), dye-sensitized solar cell devices (Taniguchi et al., 2001), gas sensor (Li et al., 2005), super capacitors (Co et al., 2005), antiferro magnetic materials (Nethravathi et al., 2005), solar cells (Irwin et al., 2008), fuel cell electrodes (Kim et al., 2004), sensors (Varghese et al., 2008) and in other advanced
applications also (Kalu et al., 2001; Nam et al., 2002). Recently, several methods have been developed for the preparation of nickel oxide and cobalt oxide by different routes such as, thermal decomposition (Wang et al., 2005), solvothermal (Beach et al., 2009), sol-gel (Park et al., 2004), chemical method (Yang et al., 2008), co precipitation (Xin et al., 2007), micro emulsion (Han et al., 2004), spray pyrolysis (Puspharajah et al., 1997), hydrothermal method (Chen et al., 2005) and by other means also (Parada et al., 2006; Morsy et al., 2009). It was reported that the composite materials can be effectively utilized for photocatalytic applications. The composite materials such as, NiO-SiO₂ (Singhal et al., 2008), TiO₂-SiO₂ (Schneider et al., 2001), CdS-TiO₂ (So et al., 2004), ZnS-TiO₂ (Yu et al., 2006), CuO-TiO₂ (Xu et al., 2009), WO₃-SiC₆TiO₃ (Keller et al., 2003), SrTiO₃-TiO₂ (Yan et al., 2009), SnO₂-TiO₂ (Sasikala et al., 2009), ZnO-SnO₂ (Asokan et al., 2010), ZnO-TiO₂ (Yang et al., 2009), ZnO-In₂O₃ (Wang et al., 2009), NiO-ZnO (Hameed et al., 2009), ZnO-ZnS (Lahiri et al., 2009) and NiO–WO₃ (Na et al., 2005) were reported and studied for photocatalytic applications. The photocatalytic degradation of organic dyes such as methyl blue, methyl orange, rhodamine B and phenol was studied by several groups (Chen et al., 2008; Abu-Zied et al., 2008). In this research paper, we report the preparation and characterization of set of NiO-Co₃O₄ nano-ceramic composites by a simple reflux condensation method and report their photocatalytic characteristics in degrading the organic dyes such as rhodamine B and methyl orange present in water.

MATERIALS & METHODS

All the chemicals are analytical in grade such as Nickel (II) acetate tetra hydrate (98.0% purity, Merck, India), Cobalt (II) acetate tetra hydrate (98.0% purity, Sigma-Aldrich, India), N, N-Dimethylformamide (99.8% purity, Merck, India), sodium mono dodecyl sulphate (> 99% purity, Merck, India), Methyl Orange (> 98.0% purity, Merck, India), Rhodamine B (> 95.0% purity, Sigma-Aldrich, India) and Ethanol (99.0% purity, Merck, India). All the received chemicals were used as without any further purification. All the reactions were carried out by using deionized water.

NiO-Co₃O₄ nano-ceramic composites (with three reactant mole ratios such as 1.5:0.5, 1.0:1.0, 0.5:1.5) were prepared by reflux condensation method. In the typical

![Fig. 1. Flow chart to prepare NiO-Co₃O₄ nano-ceramic composites by reflux condensation method](image-url)
experiment, calculated amount of metal acetate salts were dissolved in DMF solution (100 ml each) with 1 % SDS as surfactant. The above solution mixture was stirred (1200 RPM) at room temperature for about 10 minutes followed by refluxing at 90°C for 6 hrs. A colloidal precipitate was obtained. The resultant colloidal precipitate was centrifuged and washed with 10% ethanol. The products were dried at 85°C for 2 hours. Finally, the dried products were calcined at different temperatures with 200, 400, 600 and 800°C for each 2 hours. The flow chart of the synthesized NiO-Co3O4 nano-ceramic composites is indicated in Fig. 1.

The reaction mechanism involved in the synthesis of NiO-Co3O4 nano-ceramic composite material is indicated in Fig. 2.

The structural characterization were carried out with powder X-ray Diffractometer system (XRD Lab X Shimadzu) using CuKα radiation (λ = 0.154059 nm) with a nickel filter in the 2θ scanning ranges from 30° to 90° with a scan rate at 10°/min. The applied voltage and current were 40 kV and 30 mA respectively. The crystalline sizes were calculated by using the Debye-Scherrer formula. The chemical structure were recorded by Fourier transform infrared spectra (SHIMADZU Spectrophotometer) using KBr pellet technique in the range from 4000/cm to 400/cm (spectral resolution at 4/cm and number of scans at 20). The average particle sizes were measured with a Zetasizer Ver. 6.32 manufactured by the Malvern Instruments Ltd, UK. The sample (0.01g) was well dispersed in water (20ml) around 30 min before carrying out the particle size analysis. The surface morphology, size of particles and elemental compositions were carried out by scanning electron microscope (SEM JEOL JSM-6610) well equipped with an energy dispersive X-ray (EDAX) spectrophotometer and operated at 20kV. Absorbance spectrum were recorded by using UV-Vis spectroscopy (JASCO V-60 spectrophotometer) at range between 200-600nm. Photoluminescence spectrums were measured by spectrolufsophotometer (FLUOROLOG, HORIBA YVON) with Xe laser as the excitation light source at room temperature.

In this comparative study, the dyes such as, rhodamine B (RB) and methyl orange (MO) were used in the investigation of photocatalytic characteristics of the as-prepared NiO-Co3O4 (with three reactant mole ratios such as 1.5:0.5, 1.0:1.0, 0.5:1.5) nano-ceramic composite materials. The photocatalytic degradation of dyes such as, rhodamine B and methyl orange in the presence of pure NiO-Co3O4 (with three reactant mole ratios such as 1.5:0.5, 1.0:1.0, 0.5:1.5) nano-ceramic composites as well as in the absence of NiO-Co3O4 nano-ceramic composites were carried out in a simple Pyrex photoreactor. The dyes (both rhodamine B and methyl orange) with concentration of 1.0 x 10⁻⁵M were used in the present study. In each experiment, 10 mg of the prepared photocatalyst (NiO-Co3O4 nano-ceramic composite material) was mixed with 50 ml of above dye solution and then sonicated for about 10 minutes in a sonicator. The above reaction mixture was loaded in the photoreactor and again stirred well for about 30 minutes in dark to attain adsorption equilibrium condition. After this process, the reaction mixture was exposed to UV light under continuous stirring and the corresponding optical density values of the reaction mixture was recorded at time intervals such as, 0, 30, 60, 90 and 120 minutes. The absorbance studies for rhodamine B and methyl orange dye solutions were carried out at the wavelength of 554 and 465 nm respectively.
RESULTS & DISCUSSION

The powder XRD patterns of as-synthesized NiO-Co₃O₄ nano-ceramic composites are indicated in Fig. 3. The XRD pattern displays in the 2θ range between 30° to 90°. The NiO peaks found at (111), (200), (220), (311) and (222) in all the three samples were matched well with the standard reported values (JCPDS) for NiO indexed in JCPDS No. 01-1239. The Co₃O₄ peaks found at (220), (311), (222), (400), (422), (511), (440), (533) and (444) in all the three samples were matched well with the standard data for Co₃O₄ (JCPDS pattern No. 65-3103). The diffraction peaks found in all the samples can be exactly indexed to a cubic crystalline geometry. No impurity peaks were observed in the samples. The lattice parameters values were measured from 2θ values in the XRD patterns are indicated in the Table 1.

The crystal sizes (D) were calculated by using the Debye-Scherrer formula (Sapra et al., 2005) from equation (1).

\[D = \frac{0.91 \lambda}{\beta \cos \theta} \]

(1)

Where ‘\(\lambda \)’ is the X-ray source wavelength (\(\lambda = 0.1540 \) nm for CuKα), ‘\(\beta \)’ is the FWHM (full width at half maximum) and ‘\(\theta \)’ is the Bragg’s angle at the X-ray source.

The theoretical densities (Dx) (Rao, 1963) were calculated from equation (2).

\[Dx = \frac{(Z \times M)}{(N \times a^3)} \text{ g.cm}^{-3} \]

(2)

Where ‘\(Z \)’ is the number of chemical species present in the unit cell, ‘\(M \)’ is the molecular mass of the sample (g/mol), ‘\(N \)’ is the Avogadro’s number (6.023 \(\times 10^{23} \)) and ‘\(a \)’ is the lattice constant (cm) calculated from equation (3).

The lattice constant (Xu and Zeng, 1998) of the cubic system were calculated from the equation (3).

\[a = d \times (h^2 + k^2 + l^2)^{1/2} \]

(3)

Table 1. The crystallographic parameters obtained on NiO-Co₃O₄ nano-ceramic composites

<table>
<thead>
<tr>
<th>Sample</th>
<th>Crystal structure</th>
<th>Unit cell lattice parameter ‘a’ (Å)</th>
<th>Unit cell volume (Å³)</th>
<th>Theoretical density (g/cc)</th>
<th>Crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard XRD data for NiO powder (JCPDS No. 01-1239)</td>
<td>Cubic</td>
<td>4.1568</td>
<td>71.8253</td>
<td>6.9070</td>
<td>--</td>
</tr>
<tr>
<td>Standard XRD data for Co₃O₄ powder (JCPDS No. 65-3103)</td>
<td>Cubic</td>
<td>8.047</td>
<td>521.0771</td>
<td>6.1381</td>
<td>--</td>
</tr>
<tr>
<td>NiO- Co₃O₄ (1.5 : 0.5)</td>
<td>Cubic</td>
<td>4.2107</td>
<td>74.6557</td>
<td>8.4199</td>
<td>3.6281</td>
</tr>
<tr>
<td>NiO- Co₃O₄ (1.0 : 1.0)</td>
<td>Cubic</td>
<td>4.1640</td>
<td>72.1992</td>
<td>8.706</td>
<td>2.4796</td>
</tr>
<tr>
<td>NiO- Co₃O₄ (0.5 : 1.5)</td>
<td>Cubic</td>
<td>5.5063</td>
<td>166.9474</td>
<td>3.7616</td>
<td>4.6203</td>
</tr>
</tbody>
</table>

Fig. 3. The XRD pattern of NiO-Co₃O₄ nano-ceramic composites for different reactant mole ratios (a) 1.5:0.5, (b) 1.0:1.0 and (c) 0.5:1.5
The FT-IR spectra of as-synthesized NiO-Co₃O₄ nano-ceramic composites are indicated in Fig. 4. FTIR studies were carried out to understand the presence of functional group of any organic molecule. In the investigated region (4000-400 cm⁻¹), it showed significant absorption peaks at 3700-3800, 2890, 2360, 1700, 1500, 1100, 665, 569, 465 and 420/cm. It is noted that the bands at approximately 3700-3800 and 1700, 1500, 1100 cm⁻¹ were assigned to the stretching and bending vibrations of the water molecules (Pejova et al., 2001). Also, there is a band at approximately 2890 and 2360 cm⁻¹ which may be assigned due to the presence of C–H symmetric stretching mode on the surface (Xing et al., 2004). Generally any metal oxides absorption bands below 1000/cm arising from interatomic vibrations (Sun et al., 2009). The presence of two absorption bands at 569 and 665/cm was assigned to Co-O stretching vibration (Co³⁺ in the octahedral hole) mode and bridging vibration of O-Co-O bond (Co²⁺ in the tetrahedral hole) which originate from the stretching vibrations of the metal-oxygen bond and confirm the formation of Co₃O₄ spinel oxide (Venkatnarayan et al., 2006). The broad absorption band in the region of 420-465/cm is assigned to Ni-O stretching vibration mode (Gnanachari et al., 2012).

The particle size distribution curve of NiO-Co₃O₄ nano-ceramic composites is shown in Fig. 5. The particle size histograms obtained on NiO-Co₃O₄ nano-ceramic composites possessed narrow particle size distribution patterns and the mean particle diameter are indicated in the Table 2. The mean particle size determined by particle size analyzer is very close to the average particle size calculated by the SEM. The

![Fig. 4. The FTIR spectra of NiO-Co₃O₄ nano-ceramic composites for different reactant mole ratios (a) 1.5:0.5, (b) 1.0:1.0 and (c) 0.5:1.5](image)

Table 2. The particle characteristics of NiO-Co₃O₄ nano-ceramic composites

<table>
<thead>
<tr>
<th>Sample</th>
<th>Peak 1</th>
<th>Peak 2</th>
<th>Average particle size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensity (%)</td>
<td>Diameter (nm)</td>
<td>Intensity (%)</td>
</tr>
<tr>
<td>1.5:0.5</td>
<td>100</td>
<td>277.5</td>
<td>0</td>
</tr>
<tr>
<td>1:1</td>
<td>98.1</td>
<td>323.3</td>
<td>1.9</td>
</tr>
<tr>
<td>0.5:1.5</td>
<td>100</td>
<td>321.7</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3. The EDAX data obtained on NiO-Co₃O₄ nano-ceramic composites

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atomic Weight percentage of elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni</td>
</tr>
<tr>
<td>1.5:0.5</td>
<td>21.60</td>
</tr>
<tr>
<td>1:1</td>
<td>18.87</td>
</tr>
<tr>
<td>NiO-Co₃O₄</td>
<td>9.34</td>
</tr>
</tbody>
</table>
large particle size observed in the particles may be due to the agglomeration of particles observed at high temperature treatment (Lee, 2001).

The SEM images of NiO-Co$_3$O$_4$ nano-ceramic composites are shown in Fig. 6. It can be seen that the grain size of the particles present in the range of 200-300 nm in all the samples. In addition, spherical shaped grains were also present. The presence of aggregation in the samples may be due to the occurrence of large surface energy and surface tension because of high temperature treatment (Hongve and Akeson, 1996). The EDAX spectra of NiO-Co$_3$O$_4$ nano-ceramic composites are shown in Fig. 7. The presence of Ni, Co and O in the sample was confirmed by EDAX analysis. The chemical composition data of as-synthesized NiO-Co$_3$O$_4$ nano-ceramic composites are indicated in Table 3. The variation in the percentage of elements (Ni, Co and O) may be due to the reaction conditions during the preparation of NiO-Co$_3$O$_4$ nano-ceramic composites.

The optical absorption spectra of NiO-Co$_3$O$_4$ nano-ceramic composites are shown in Fig. 8. From the absorption spectra, it was found that the wavelength was observed at 256.5, 256 and 257 nm for the samples (1.5:0.5, 1.0:1.0, 0.5:1.5 reactant mole ratios). The absorption energy band gap (E$_g$) can be determined by the following Tauc (Devi et al., 2007) equation (4)

\[(\alpha h \nu)^{n} = K (h \nu - E_g) \]

Where, $h \nu$ is the photon energy (eV), α is the absorption coefficient, K is a constant relative to the material, E_g is the band gap and n is either 1/2 for an indirect transition or 2 for a direct transition. The direct band gap can be estimated by extrapolating the linear
Fig. 6. The SEM images of NiO-Co$_3$O$_4$ nano-ceramic composites for different reactant mole ratios (a) 1.5:0.5, (b) 1.0:1.0 and (c) 0.5:1.5

Fig. 7. The EDAX spectra of NiO-Co$_3$O$_4$ nano-ceramic composites for different reactant mole ratios (a) 1.5:0.5, (b) 1.0:1.0 and (c) 0.5:1.5
region in the Tauc plot of $(Ah\nu)^2$ versus photon energy ($h\nu$) as shown in the Fig. 9. This gives the energy band gap values of NiO-Co$_3$O$_4$ nano-ceramic composites as 5.75, 5.84, 5.72 eV respectively. The reported band gap value (Ai and Jiang, 2009), the Eg values of as-synthesized NiO-Co$_3$O$_4$ nano-ceramic composites are greater than those of bulk NiO and Co$_3$O$_4$ (3.4-4.0 eV and 1.77-3.17 eV respectively). The increase in the band gap value of NiO-Co$_3$O$_4$ nano-ceramic composites may be due to the quantum confinement effects of the nanoparticles (Zhang et al., 2007). The PL Emission spectra of NiO-Co$_3$O$_4$ nano-ceramic composites are shown in Fig. 10. According to the wavelength of UV absorbance spectra, the nanoceramic composites exhibited the excitation wavelength at 270 nm. Strong broad emission peaks were found for the NiO-Co$_3$O$_4$ nano-ceramic composites at 308, 307 and 309 nm respectively. The strong broad emission peaks appeared in all the samples may be due to the high purity and perfect crystalline nature (Mohamed and Nesaraj, 2013). Fig. 11 shows the degradation percentage curve of rhodamine B in presence NiO-Co$_3$O$_4$ nano-ceramic
composites irradiated under UV light. The degradation rate of rhodamine B dye without catalyst was found to be only 23% even after 120 minutes exposure to UV light. However, in presence of NiO-Co$_3$O$_4$ (1.5:0.5, 1.0:1.0, 0.5:1.5) nano-ceramic composites, rhodamine B was degraded 69, 77 and 61% respectively after exposure to UV radiation for about 120 minutes. Both the results have shown a good level of decrease in the absorption intensity with respect to time. From the result, it was found that sample with the composition, NiO-Co$_3$O$_4$ (1.0:1.0 mole reactant ration) has good photocatalytic characteristics in degrading the organic dyes such as, rhodamine B and methyl orange under UV light irradiation.

Fig. 10. Emission spectra of NiO-Co$_3$O$_4$ nano-ceramic composites for different reactant mole ratios (a) 1.5:0.5, (b) 1.0:1.0 and (c) 0.5:1.5

Fig. 11. Percentage degradation of Rhodamine B in the NiO-Co$_3$O$_4$ nano-ceramic composites for different reactant mole ratios (1.5:0.5, 1.0:1.0, 0.5:1.5)
The percentage of degradation was calculated (Amaral et al., 2004) from formula (5).

\[
\text{The percentage of degradation} = \left(\frac{C_0 - C_t}{C_0} \right) \times 100 \quad (5)
\]

Where, \(C_0 \) is the initial absorbance of the dye solution and \(C_t \) is the absorbance at regular time interval respectively.

Photocatalytic reactions with different dye can be expressed by the Langmuir-Hinshelwood kinetics (Asiri et al., 2011). The photocatalytic degradation of rhodamine B and methyl orange with/without photocatalysts under UV light obeys pseudo-first-order kinetics with respect to the degradation time and followed the linear equation (6).

\[
\ln \left(\frac{c_0}{c_t} \right) = k_{app} t \quad (6)
\]

Where, \(c_t \) and \(c_0 \) is the reactant concentrations at times \(t = t \) and \(t = 0 \), \(k_{app} \) and \(t \) is the apparent reaction rate constant and interval time respectively.

The kinetics spectra (a plot of \(\ln \left(\frac{c_0}{c_t} \right) \) versus UV light irradiation time \(t \)) of NiO-Co\(_3\)O\(_4\) nano-ceramic composites in rhodamine B are shown in Fig. 13. The apparent first-order constant is determined as 0.00244, 0.00625 and 0.01157 (with NiO-Co\(_3\)O\(_4\) nano-ceramic

Fig. 12. Percentage degradation of Methyl Orange in the NiO-Co\(_3\)O\(_4\) nano-ceramic composites for different reactant mole ratios (1.5:0.5, 1.0:1.0, 0.5:1.5)

Fig. 13. Kinetics linear curves of Rhodamine B in the NiO-Co\(_3\)O\(_4\) nano-ceramic composites for different reactant mole ratios (1.5:0.5, 1.0:1.0, 0.5:1.5)
composites) and 0.00552 (without catalysts), for rhodamine B. It was found that the reaction rate calculated for rhodamine B with 10 mg of NiO-Co₃O₄ (1.0:1.0) nano-ceramic composites was in good agreement with the results. The kinetics spectra of NiO-Co₃O₄ nano-ceramic composites in methyl orange are shown in Fig. 13. The apparent first-order constant is determined as 0.00167, 0.00598 and 0.01221 (with NiO-Co₃O₄ nano-ceramic composites) and 0.00398 (without catalysts) for methyl orange. The reaction rate calculated with methyl orange with 10mg of NiO-Co₃O₄ (1.0:1.0) nano-ceramic composites was in good agreement with the results. From the experimental results, it was confirmed that the NiO-Co₃O₄ (1.0:1.0) nano-ceramic composite is showing better photocatalytic characteristics in the photodegradation of rhodamine B (77%) and methyl orange (84%) dyes under UV light irradiation.

CONCLUSIONS
NiO-Co₃O₄ nano-ceramic composites were prepared by reflux condensation method using SDS as surfactant and the results are reported. The XRD data obtained on NiO-Co₃O₄ nano-ceramic composites shows that crystallized face-centered cubic in nature. The FTIR data confirmed the presence of Ni-O and Co-O bond formation. The particle size of NiO-Co₃O₄ nano-ceramic composites particles present in the range nanometer range. The SEM photograph confirmed the presence of nano sized grains in the sample. The EDAX data confirmed the presence of three elements (nickel, cobalt and oxygen) in the samples. The optical studies were carried out for NiO-Co₃O₄ nano-ceramic composites using UV and PL techniques of the. Photocatalytic activity studies carried out with NiO-Co₃O₄ (1.0:1.0) nano-ceramic composites in presence of organic dyes such as, rhodamine B and methyl orange dyes under UV light irradiation (for two hours) resulted in the degradation of 77% and 84% respectively. Therefore, NiO-Co₃O₄ nano-ceramic composites may be considered as potential candidates for the degradation of organic dyes present in water.

ACKNOWLEDGEMENTS
The authors are grateful to the DST Nano Mission, Govt. of India, New Delhi for its support. The authors are also thankful to the management of Karunya University for its support and encouragement to carry out this research work.

REFERENCES
Abu-Zied, B. M. (2008). Oxygen evolution over Ag/FeₓAlₓO₃₋ₓ (0.0 d” x d” 2.0) catalysts via N₂O and H₂O₂ decomposition. Applied Catalysis A: General, 334, 234-242.

WO₃ thin films prepared by thermal evaporation. Sensors, 5, 519-528.

