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ABSTRACT: Urban Expansion Model (UEM) was adapted to simulate urbanization which implements
Geospatial Information Systems (GIS), Artificial Neural Networks (ANNs) and Remote Sensing (RS).
Two satellite imageries with specific time interval, socio-economic and environmental variables have
been employed in order to simulate urban expansion. Socio-economic and environmental variables
were used as inputs while construction and non- construction areas were used as outputs to train
the neural network. Calibration of proposed model was performed with area under the ROC Curve
(AROC) and Kappa Statistic (KS) which are non-shape performance metric. A real-life case study of
Tehran Metropolitan Area (TMA) is presented to demonstrate the process. This paper presents a
version of the UEM which parameterized for TMA and explores how factors such as road, building
area, service centre, green space, elevation, aspect and slope can influence urbanization. Having
urban expansion model with specific time interval and assuming the existence of the same rate of
urbanization, new construction areas of region can be predicted. The overall accuracy of the model

to predict new construction areas was 80% and 78% with AROC and KS, respectively.
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INTRODUCTION

Rapid urbanization has caused not only social
problems but also environmental problems in most
of the mega-cities. Complexity of urban systems
necessitates the consideration of interdependency
among various factors for urban expansion
modelling. Urban expansion models attempt to
project future changes in urban based on past
trends and the drivers thought to determine
conversions of land between different categories.
The expansion of urban areas is determined by
the interaction of three broad types of phenomena:
the physical constraints of geography and
environment, the demand for land by the
households and firms who inhabit the city, and the
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policy constraints that govern land use and spatial
interactions in the city. As sustainable development
becomes a goal for many urban communities,
urban expansion has drawn more public attention.
It can provide local land-use planners and regional
resource managers with information about the
potential effects of urban expansion on the
environment. A severe problem for modelling
urban expansion has been the lack of spatial explicit
data. RS and GIS provide us with an efficient tool
to monitor urban changes in urban areas during
past three decades. With time series satellite data,
long-term urbanization can be modelled.

A method for integrating ANN, GIS and
Cellular Automata (CA) for the purpose of
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simulating different development patterns based
on the planning objective was presented (Li and
Yeh, 2002). They refined this model dealing with
multiple regional land-uses and simulations for
alternative development scenarios (Yeh and Li,
2003); however, their investigations did not ever
scale down at the intra-urban level. Urbanization
is a rapid land-use change process that produces
different patterns depending on the proximity to
large urban cities across the landscape (Wu 2004).
The Land Transformation Model (LTM) is a land-
use change model that uses ANNs and GIS
(Pijanowski et al., 2000, 2002 & 2005). Monitoring
the urban expansion with multi-temporal GIS maps
was performed in Iran (Tayyebi et al., 2008a, b).
KAPPA STATISTIC is used for measuring of
accuracy assessment (Congalton et al., 1983;
Monserud and Leemans, 1992; Congalton and
Green, 1999; Smits et al., 1999; Wilkinson, 2005).
A cross tabulation matrix is sometimes called a
transition matrix when it compares two maps from
different times (Pontius et al. 2004b). All values
on the diagonal indicate agreement between the
two maps and all values off the diagonal indicate
disagreement. Cross tabulation matrices are used
regularly to measure the spatial accuracy of raster
maps (Congalton and Green, 1999) and more
generally to quantify the association between two
categorical maps for a variety of reasons (Pontius
etal. 2004a, b & Pontius and Spencer 2005). Eight
calibration metrics are used to estimate model
goodness of fit: four location-based measures and
four patch metrics based on patch size, shape and
configuration (Pijanowski et al., 2006).

This paper provides adaption of UEM which
utilizes transportation factors, proximity or density
of important landscape features as inputs while
construction and non-construction areas as outputs
to model urban expansion over large regions. Two
LANDSAT images of TMA in 1988 and 2000
were rectified and registered to Universal
Transverse Mercator (UTM) WGS 1984 zone
39N. Supervised classification was used to classify
the images to different land-use categories. In
addition four and two land-use classes that were
extracted from first and second satellite image
respectively, three other classes were added from
topographic data. Then, database was included
these nine classes: road, building area, service
centre, green space, and elevation, slope, aspect,
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construction and non-construction areas. The
proposed model was calibrated with these two non-
shape performance metrics: AROC and KS.
Having urban expansion between 1988 and 2000
and assuming the existence of the same rate of
urban change, new construction areas of TMA
has been derived for 2012. The overall accuracy
of the model to predict new construction areas
was 80% and 78% with AROC and KS,
respectively.

Materials and methods provide a basic principle
of ANNs is applied to UEM. Results and
discussion present UEM which parameterized for
TMA, using a set of spatial interaction rules that
are derived from GIS routines.

MATERIALS & METHODS

A Multi-Layer Perceptron (MLP) is designed
to approximate an unknown input-output relation
by determining the weight of each connection via
learning rules. The scheme of work that neural
network undertake, starts with design of the neural
network and identifies the inputs using a data, using
subset of the inputs, the network was trained, then
neural network testing was performed using the
other part of data set of inputs and the final stage
was to use the information extracted from the
neural network to predict new construction areas.
The net contains an input layer with multiple units,
a hidden layer with multiple units, and an output
layer with only one unit. Fig.1 shows a typical
feed-forward back-propagation neural network
(Pijanowski et al., 2002).

Binary sigmoid function, one of the most typical
activation functions, is used in this study. A
coefficient can be introduced to the activation
function; this is called a bias. A training-set with a
statistically significant number of pixels for each
category has been generated. The learning of the
neural network has then been carried out by feeding
it with pairs of vectors: the input vector contained
the number of measurements; the output vector
contained the corresponding known class of
construction and non-construction areas. The
procedure has then been tested on a set of pixels
not belonging to the training set. The output unit
receives a signal from each hidden layer and sums
the signals with corresponding weights and
computes the output. The weights can be
determined using the robust Back-Propagation
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Fig. 1. A typical architecture of feed-
forward back propagation neural network

(BP) algorithm. The algorithm randomly chooses
the initial weights, and compares the calculated
output for a given observation with the expected
output for that observation. Using the Mean
Squared Error (MSE), the difference between the
expected and calculated output values across all
observation is outlined. After all observations are
submitted to the network, the weights are modified
according to a generalized delta rule to distribute
total error among the various units in the network.
The UEM follows eight sequential steps including:
(1) rectification and registration; (2) classification;
(3) integrating topographic data in database; (4)
coding of data to create spatial layers of predictor
variables; (5) applying spatial or non-spatial
function in ArcGIS; (6) integrating all input grids;
(7) calibration of UEM; and (8) temporal
prediction. The GIS portion of the UEM is encoded
in ArcGIS 9.2 Avenue scripting language. A
collection of routines written in Java is used to
process and analyze data.

In rectification and registration, the images
were geometrically rectified and registered. At this
step, combinations of suitable bands were
performed to prepare images for better
classification on both satellite imageries. In
classification, combined images were classified to
classes of interest on first and second satellite
imageries. First and second satellite imageries
were classified to land-use categories and
construction and non-construction areas,
respectively. These different classes were
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converted to separate spatial layers that can be
used to train and test neural network. In integrating
topographic data in database, other classes of
necessitate topographic data were added to
database. In coding of data to create spatial layers
of predictor variables, inputs are generated from
a series of base layers that are stored and managed
within a GIS. These base layers represent land-
Jses or features in the landscape. Grid cells are
coded to represent variables as either binary or
continuous variables depending on the type of
attribute. Applying spatial or non-spatial function
in ArcGIS relates input variables to land-use
transitions for each location in an area. We use
three classes of functions in ArcGIS:
neighbourhoods or densities function; site specific
characteristics function; and distance function
from the location of a predictor cell. In integrating
all input grids, ANN technique was utilized to
integrate all input grids. The output from this step
is a map of likelihood values, which specifies the
relative likelihood of change for each cell based
on the predictor variable values. In calibration of
UEM, AROC and KS were used to estimate model
goodness of fit. In temporal prediction, after the
net was trained and calibrated respectively, biases
and weights were obtained, the feed-forward
algorithm was used for the net with new topology.
In this topology, spatial layers which were
extracted from second satellite imagery were
replaced with spatial layers from first satellite
imagery as input for net. After it, the feed-forward
algorithm was used for prediction. Output of this
net means the future new construction areas for
that region.

RESULTS & DISCUSSION

TMA is located in North of Iran which
exhibited accelerated rates of urban expansion
over the last three decades which resulted from a
high population growth rate and increased rural-
urban migration. Being the capital of Iran, TMA
has undertaken a great deal of economical
developments in term of urban change and the
rapid growth of infrastructure. TMA with a day
time population of some 10 million and with a
metropolitan area of over 2000 square kilometres
is the centre of the national government and of
commercial, financial, cultural and educational
activities in Iran.
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National Cartographic Centre (NCC) database
was used as the main source of data for TMA.
Two LANDSAT TM imageries of TMA with
28.5m resolution were taken at 1988 and 2000.
LANDSAT images were corrected for
atmosphere attenuation and geo-referenced to
common base maps. In total 72 Ground Control
Points (GCPs) were selected on both images and
used for geometric correction. NCC database with
1:25000 scales and 10m resolution was used as
the source of topographic data. NCC topographic
data were integrated with our database to provide
the appropriate inputs to the GIS-based model.
Locations of service centres were obtained from
published county road maps and stored as point
coverage. Data on land-use, transportation, natural
features, public lands, digital elevation and political
boundaries were incorporated into the Arc/Info
9.2 software.

The first step in assessing the variables is to
determine the factors affecting the suitable urban
change on the basis of an analysis of existing
studies. Input layers represent phenomena which
may influence the model. From previous work
(Tayyebi et al., 2008a, b), it is found out that the
following seven independent variables will
influence urban expansion in TMA which including:
slope, elevation, aspect, building area, service
centre, green space and road.

Both images were geometrically rectified and
registered to the Universal Transverse Mercator
(UTM) WGS 1984 zone 39N. Registration errors
were about 0.50 pixels. In addition to, combinations
of RGB bands of LANDSAT images were
performed to prepare satellite imageries for better
classification. Fig.2 shows the final results for the
1988 and 2000 LANDSAT images of TMA.

In order to have less process and time saving
for classification, TMA were extracted from two
LANDSAT imageries. The first 1988 and second
2000 LANDSAT imageries were subjected to a
classification of zones with ENVI software.
Supervised classification was utilized to classify
the images to different land-use categories. All
land-use classes of TMA were also reclassified
from their original classification to Anderson Level
I (Anderson et al., 1976) for the modelling
exercises. In order to classify both images, four
classes of interest were selected from different
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classes in the images namely: road, building area,
service centre and green space. The overall
accuracy for the classification of LANDSAT TM
image 1988 was 86.12%, while it was 87.64%
for LANDSAT TM image 2000. Fig.3 shows the
image classification results for TMA.

Absorbing excursion spaces contain distance from
service centre, green space and building area.
Another important factor is the distance of each
cell has from the nearest road cell calculated.
Landscape topography is an influential factor
contributing toward building area utilization.
Elevation should be important in this landscape

1988

2000

0 10 20 30 40 50 60 Kilometers
e T —

Fig. 2. Rectification, registration and band
combination results for 1988 and 2000
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Fig. 3. Image classification results for 1988 and
2000

that is prone to flooding. Slope and aspect are
important to developers who want to minimize
landscaping costs. The value of driving variable
grids represented the potential accessibility of a
location for urban development. Then, for each
cell, there is a vector of 7 by 1 measurements as
input. Fig.4 shows seven variables which were
compiled in Arc/Info Grid format as inputs at 1988.

There are two constraints for prediction of
new construction areas. First, cells that are
construction in 1988 are obviously not candidates
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for new construction areas in 2000. Second, cells
that are protected legally from new construction
areas are assigned the absolute lowest suitability
value in the final suitability maps. The second
LANDSAT imagery was subjected to a
classification of two zones, construction and non-
construction areas with ENVI software. The
output vector was coded to represent cells as
binary variable which values from 0 (non-
construction) to 1 (construction). Fig.5 shows this
variable as output which was compiled in Arc/
Info Grid format at 2000.

Neural Network Toolbox of Matlab software
was used for the design, training and prediction.
The neural network was designed to have a flexible
number of inputs depending on the number of
predictor variables, an equal number of hidden units
as input units and an output unit (Fig.6). All input
grids were normalized to a range from O to 1. The
output layer contained binary data that represented
whether a cell location changed (1= construction;
0= non-construction) during the study period. Tan-
sigmoid transfer activation function was used for
the activation of hidden neurons. Linear transfer
function purelin activation function was used for
the output neuron activation (Tsoukalas and Uhrig,
1997). The network was trained with the training
data and the overall MSE generated with Matlab
software and each cycle was stored in a file for
analysis.

Cells that were predicted to transition to new
construction areas were compared with the cells
that actually did transition during the time period
of study. Study area includes 245,588 cells which
85,956 (35.0%) of cells have limitation to undergo
transition while 159,632 (65.0%) of cells can be
subjected to transition in TMA. ANN estimated
127,706 (80.0%) of qualified cells had change
likelihood values of 0 while 3,193 (2.0%) had
likelihood values of 1 and other cells 28,733
(18.0%) have value between 0 to 1. Cells with
values closest to 1 were selected as locations most
likely to transition. The critical threshold value,
which is the lowest change likelihood value
selected for cells to transition during the 12-year
period, was 0.5. Only 3.5% of all qualified areas
changed to urban in the observed databases.
Results show that only 5,587 cells undergo
transitions in TMA.
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KAPPA STATISTIC quantifies the level of
agreement between two maps compared against
the null hypothesis that the maps do not differ by
chance from a random map. It is followed Pontius
(2002) and Sousa et al. (2002) who suggest that
KS values of less than 0.4 reflect poor performing
models, 0.4 to 0.6 are fair and 0.6 to 0.8 are good
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and KS values greater than 0.8 represent excellent
agreements between model and observed
datasets. The ROC curve plots the rate of true
positive to positive classifications against the rate
of false positive to negative classifications as
threshold value is varied between 0 and 1. We
use a nonparametric approximation using SPSS
(SPSS Inc, 2003) to estimate the area under the
curve that is produced by varying the threshold
and plotting. AROC is calculated for each of the
simulations and plotted AROC as a function of
simulation training cycle and percentage of urban
change. All two are derived from a standard two-
by-two contingency table (Pontius 2002) created
when simulated and observed maps are compared
(Table 1).

Table 1. Confusion matrix for model performance
for KS calculation

Observed Simulated Model Run
change 0 1 Total
0 IDll P12 P1T
1 l:)21 I:)22 PZT
Total P11 P, 1
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For each 100 cycle intervals AROC and KS
were computed and results plots against each other
(Fig.7). The accuracy of the model after 5,000
cycles to predict new construction areas in TMA
was 80% and 78% for AROC and KS,
respectively (Fig.8).

For the rank order of input variables according
their influence on the model performance, we
compared the predictive ability of the 7 versions
of the reduced-variable model of input variables.
We excluded each variable and perform UEM
with other six-variables respectively. We saved

1 -
09 r
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

the AROC for each of the six-variable models
across all of the training cycles with 100 cycle
intervals. The resultant value represents the
relative effect, of each predictor variable on the
model performance. The AROC values of the six-
variable models with maximum cycles were
compared against each other and it was concluded
that the rank order of predictor variables according
their influence on the model performance was
respectively: distance to building areas, distance
from green space, distance from road, slope,
distance from service centre, aspect and elevation.

0 500 1000 1500 2000

2500 3000 3500 4000 4500 5000

Fig. 7. Accuracy assessment in the study areas across training cycles: (a) AROC (b) KS
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Fig. 8. Accuracy assessment in the study areas across training cycles: (a) AROC (b) KS
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Interestingly, six-variable models curves appear
to adhere to two major inflection points. At the
first, during first 1000 cycle intervals, nearly all of
the predictor variables have a large direction to a
positive slope. The second inflection point occurs
about 3500 cycles were adequate to stabilize the
AROC values.

After the net was trained and calibrated
successfully, biases and weights were obtained,
the feed-forward algorithm was used for
prediction. Having urban expansion model between
1988 and 2000 and assuming the existence of the
same rate of urban change, new construction areas
of TMA has been derived for 2012 based on 2000
full dataset. The suitability map in ANN is created
based on seven independent input variables. Fig.9
shows result of predictions of new construction
areas in 2012. Future urban expansion appears to
be focused west of the TMA. A great deal of
clumped development is anticipated in the west
portion of the TMA. In addition, a great deal of
dispersed development is anticipated in the south
portion of the TMA. But, there is nearly predicted
no development into the centre and north of the
TMA. Because in centre of TMA, there is no
space that can be developed and in north of TMA,
there is legal restriction for development with
government. What is interesting from these
forecasting results is that the model predicts new
construction areas occur along building areas.

I Construction areas in 2000
New construction areas in

N
I  \on-construction areas In a
W E

01 2 3 4 5 6 Kilometer

S

Fig. 9. Urban expansion of TMA in 2012
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CONCLUSION

Models of urban expansion are tools to support
the analysis of the causes and consequences of
urban change in order to better understand the
functioning of the urban expansion system and to
support urban planning and policy. The UEM
presented in this paper examines the relationship
between seven predictor variables and
urbanization. Integration ANNs with GIS is
essential for modelling urban changes because of
the spatial nature of many the input variables. The
use of an appropriate relationship model is critical
for a reliable prediction of future urbanization.
The alternative approach of computational neural
network examines the relationship between seven
predictor variables and urbanization, and achieves
higher overall predictive ability than other method
when facing a complex system. We employed
AROC and KS calibration metric to find different
information on how well the model compares to
observed urban expansion. The overall accuracy
of the model to predict urban expansion was 80%
and 78% with AROC and KS respectively for
TMA. With developing seven versions of the
UEM, each with one of the variables removed,
we assessed the relative contributions of each
variable on model performance with AROC
calibration metric consideration. Distance to
building areas was the best variable of urban
expansion during the 1988-2000 periods in TMA.
However, we found that the model for TMA,
where urban expansion is much clumped.
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