Environmental Variability of Tropical Sandy Beaches Across an Anthropic Gradient: The Case of Central Veracruz (Southwestern Gulf of Mexico)

Hidalgo, G.1, 4*, Castañeda-Chávez, M.R.2, Granados-Barba, A.3 and Sánchez-Domínguez, B.E.1

1Postgrado en Ecología y Pesquerías, Universidad Veracruzana (UV), Independencia 30, Pisos 1 y 2. C.P. 94290, Boca del Río, Veracruz, México
2Instituto Tecnológico de Boca del Río (ITBOCA), Veracruz, México
3Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana (ICIMAP-UV), Veracruz, México
4Instituto de Oceanología, Agencia de Medio Ambiente del Ministerio de Ciencia, Tecnología y Medio Ambiente (IDO-CITMA), 1ra. 18406 entre 184 y 186, Playa, C.P. 11600, La Habana, Cuba

ABSTRACT: In a coastline with growing urbanization, we examined the condition of water and sediments in sandy beaches within a gradient of uses and modification, in contrast with a reference unmodified beach, to assess different disturbance sources and environmental impact grades. The gradient was analyzed depending on beaches proximity to the urban nucleus, accessibility, tourism and recreation activities, and construction of breakwater structures. Using an integrated approach, some physical, chemical, microbiological and morphodynamic parameters were measured during two sampling campaigns. The results indicate a higher content of organic matter in sediments of the beaches near to the Veracruz Reef System with respect to the reference beach, and in the cold fronts season than in rainy season. This temporal variation can be explained by the regional pattern of surface circulation, favoring downwelling in cold fronts season and upwelling in rainy season. Water temperature, salinity and dissolved oxygen concentrations also accounted for seasonal variations. The stress gradient was evident in the granulometric characteristics of sediments, fats and oils, total solids, and enterococci concentrations in pore water. Intertidal slopes and littoral currents indicated not only a marked seasonality of these parameters, but differences between unmodified and modified beaches by breakwaters. All parameters are discussed, particularly those that accounted for the perturbation gradient, increased by the presence of breakwaters. This study serves as baseline of the environmental spatial-temporal variation in intertidal of the sandy beaches of central Veracruz, and as a reference in assessments of other beaches worldwide with similar conditions.

Key words: Beaches, Intertidal environment, Gradients, Environmental impact, Breakwaters

INTRODUCTION

Exposed sandy beaches are increasingly perturbed by human activities in most urban and industrial coastal zones of the Gulf of Mexico. The Veracruz-Boca del Río littoral tourist corridor is located nearby a major seaport, exposed to fluvial and pluvial outfalls and wastewater discharges in some areas, transformed with breakwater structures and used for recreational purposes. The sandy beaches of the Veracruz metropolitan zone are semi-protected by numerous reef structures that belong to the Veracruz Reef System National Park (PNSAV) and are frequently visited by domestic and international tourists (Sánchez-Domínguez et al., 2015).

The presence of breakwaters indirectly modifies environmental characteristics by limiting the natural beach dynamics (Bulleri and Chapman, 2010; Valadéz-Rocha and Ortiz-Lozano, 2013). Beach sand is considered a possible linkage between wave energy level and water quality, as a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment (Feng et al., 2016).
et al. (2006) pointed out the historical process of estuarinization of coastal waters. In this zone winds are natural disturbance sources influencing the coastal morphodynamics. Winds frequently exceed 40 km per hour during meteorological events, such as cold fronts from October to March (Ortiz-Pérez and De la Lanza-Espino, 2006), and 100 km per hour during the less frequent but devastating tropical storms or hurricanes from June to November (Carrillo et al., 2007), generating storm surges that cause floods in lowlands, beach erosion and sediment transport in different directions, with predominant movement of sand from North to South. Extreme events can even cause sedimentation processes and estuarinization of coastal waters.

There are few comparative studies in intertidal zones of Veracruz that integrate data on multiple environmental parameters. Mendez-Ubach et al. (1985) analyzed the textural characteristics of sediments and their relationship to benthic macrofauna in 29 beach localities along the Veracruz littoral. Kasper-Zubillaga et al. (1999) studied petrography and geochemistry of Holocene sands and its implications for provenance and tectonic setting. Moreno-Casasola (2006; 2010) also included several aspects of these zones in her important compendia on coastal ecology. As part of the Clean Beaches Program in Mexico, monitoring of the sanitary quality of sea water for recreational use is done three times a year in 16 sandy beaches of the Veracruz coast.

Given the complexity of this coastal environment, interdisciplinary studies have been indicated as a top-priority, especially because natural and anthropogenic phenomena often exceed the carrying capacity of ecosystems (Carranza-Edwards et al., 2004; Elko et al., 2014). Nevertheless, there are no comprehensive surveys of multiple parameters in time and space to estimate the effects of the combined influence of uses and modification on beaches. In order to assess disturbance sources and environmental impact, the present study analyzes the intertidal physical, chemical, morphodynamic and microbiological conditions in three sandy beaches across a gradient of uses and modification at the Veracruz metropolitan zone, in comparison with a reference outer beach.

MATERIALS & METHODS

The Veracruz metropolitan zone, as defined by the Mexican institute of statistics and geography (INEGI), is situated in the middlemost part of the coastal State of Veracruz (southwestern Gulf of Mexico). Siemens et al. (2006) pointed out the historical process of expansion of the city in the environmental and landscape context, with implications for dunes and wetlands ecosystems.

This study was conducted in three sandy beaches (Villa del Mar, Mocambo and Arroyo Jiote) of the Veracruz metropolitan zone (Fig. 1), and a reference beach located in the natural reserve La Mancha (19°35’28"N, 96°22’41"W), about 50 km Northwest to the Veracruz port. The four beaches of this case study are exposed to the three types of wave regime present in the Gulf of Mexico according to Lankford (1977): waves and storm surges associated with tropical cyclones, waves and storm surges associated with cold fronts, and waves and storm surges generated within the fetch of winds on the gulf surface. The proximity of three of them to Veracruz Reef System, a coral reefs system which protect from the joint effect of wind and waves, as well as its orientations on the coastline, can modify both the fetch of wind and the magnitude and direction of incident waves.

Prevailing winds are gusting constant Northeast trade winds throughout the year, generating waves with typical periods of between five and seven seconds and 1.5 m high, according to Ortiz-Pérez and De la Lanza-Espino (2006). From October to March recurrently affect dry cold North winds, generating waves that can reach more than three meters and periods of ten seconds.

Human use and modification of beaches were analyzed based on their relative location to the urban nucleus, the presence of access roads, incidence of tourism and recreation, and construction of breakwater structures (Table 1).

Samplings were carried out in March (representative of cold fronts season) and September (representative of high temperature and precipitation) of 2013, at low tide conditions, in the days of the month with lower tidal variation (less than 0.35 m) according to the prediction models obtained from the National Tidal Service data station located at 19°11.5’N and 96°7.4’W. At low tide, almost all of the fauna are buried,
least mobile and structural features of the beach are most evident (Schlacher et al., 2008).

Two sites with different configuration of intertidal slope (cusp and horn) were settled at each beach, away from their natural or artificial boundaries, to include different local morphodynamic conditions. Sediment samples per site were taken using a cylindrical PVC corer of 10.5 cm internal diameter, 0.01 m² area and inserted 10 cm into sediment, from a transect at three levels of tidal range for analysis of the main granulometric parameters following Buchanan (1984), and percentage of organic matter using the method of weight loss ignition by Dean (1974).

Textural parameters of sediments were analyzed according to the criteria of Folk and Ward (1957), using the SysGran 3.0 program (Camargo, 2005) with particle sizes in phi (x) notation of the geometric Wentworth scale, where \(x = -\log_2 d\), and \(d\) = diameter (mm). Organic matter results were compared at each beach per
Impacts in sandy beaches

Temperature, pH, salinity, and dissolved oxygen concentrations in water were registered at each site with a YSI 556 multiparameter probe, with precision of 0.01 for each parameter. Water physical chemical parameters were also compared per sampling campaigns using Kruskall Wallis tests.

A shallow water sample per site was taken with a two-liter bottle of PVC, and preserved in refrigeration for determination of fats and oils, and total solids, according to the national standards. The fats and oils of both campaigns were tested for significant differences and post-hoc comparisons among beaches. Before the analysis, data homogeneity of variance was proved by Levene test \(F(3,12) = 2.65, p = 0.09 \). All analysis of variances and post-hoc tests of multiple comparisons were performed with significance level of \(p < 0.05 \).

Pore water samples were collected with sterile serological pipettes and poured into sterile labeled bags that were transported in a container at 4 °C to the laboratory. Enterococci concentrations in pore water were determined in the March campaign as described in Sánchez-Domínguez et al. (2015) using the chromogenic substrate method Enterolert IDEXX, and were compared among beaches by a Kruskall Wallis ANOVA test and multiple comparisons of mean ranks for all groups. In this month, increased persistence of these microorganisms would be expected due to lower temperatures (Whitman et al., 2014).

The intertidal slope was measured according to Emery (1961). Beach morphodynamics were assessed by Dean’s parameter \(\Omega = H_b \cdot 100 / W_s \cdot T \) where \(H_b \) is breaker height (m), \(W_s \) is sand fall velocity (cm s\(^{-1}\)) and \(T \) is wave period (sec) (Short, 1996). Direction and magnitude of littoral current were registered by a drifting buoy with a Garmin GPS, taking records every 30 seconds.

RESULTS & DISCUSSION

Villa del Mar and Mocambo are urban beaches modified by breakwater structures, while Arroyo Jiote and La Mancha are rural and virtually unmodified beaches. Accessibility and recreation incidence decrease from Villa del Mar to Arroyo Jiote, the last one being similar to La Mancha considering these two characteristics.

Sediment size and sorting of sediments varied along the gradient of uses and modification, from very fine sand and well sorted in Villa del Mar to medium sand and poorly sorted in Arroyo Jiote (Table 2). The granulometric parameters in La Mancha beach were similar to those of Arroyo Jiote. These generally are mainly due to the interaction of local morphodynamic processes (Calliari et al., 2003), but in this case were clearly influenced by the use and modification factors analyzed. The intervention differences regarding accessibility and incidence of tourism and recreation activities likely have influenced textural characteristics of sediments; as they involve different grades of impacts that can reduce the sediment budget, e.g. foreshore area reduction, sand trampling, regular beach cleaning or grooming, construction on and degradation of coastal dunes (DeFeo et al., 2009).

The organic matter content in sediments was low as expected in the highly hydrodynamic environments of the swash zones, where the effects of wave action keep phytoplankton populations at a relatively low level (Steele and Baird, 1988). The percentages of organic matter were lower during September than in March in all four beaches, with significant differences between sampling campaigns in Villa del Mar and La Mancha, and significantly higher in Villa del Mar.

Table 2. Granulometric parameters (Φ) of the study beaches

<table>
<thead>
<tr>
<th></th>
<th>La Mancha</th>
<th>Villa del Mar</th>
<th>Mocambo</th>
<th>Arroyo Jiote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textural group</td>
<td>Medium sand</td>
<td>Very fine sand</td>
<td>Fine sand</td>
<td>Medium sand</td>
</tr>
<tr>
<td>Mean particle size</td>
<td>2.45-2.72</td>
<td>2.91-2.99</td>
<td>2.72-2.84</td>
<td>2.57-2.67</td>
</tr>
<tr>
<td>Median particle size</td>
<td>2.38-2.69</td>
<td>2.92-2.99</td>
<td>2.77-2.86</td>
<td>2.58-2.67</td>
</tr>
<tr>
<td>Sorting</td>
<td>Poorly sorted (0.8-1.1)</td>
<td>Well sorted (0.6-0.7)</td>
<td>Moderately sorted (0.7-0.8)</td>
<td>Poorly sorted (1.1-1.4)</td>
</tr>
</tbody>
</table>
Mocambo and Arroyo Jiote compared to the reference beach (Fig. 2).

The seasonal variations found in organic matter content seem to be explained by the pattern of surface circulation in this area, depending on the stress component of parallel wind to the coast, favoring downwelling in winter and upwelling in summer (Zavala-Hidalgo et al., 2003, Dubranna et al., 2011). In this sense, there have been found sedimentation rates in PNSAV significantly higher during winter, with values of over 2 kg m$^{-2}$ day$^{-1}$ (Pérez-España et al., 2012).

Moreover, the impact of weather events, such as cold fronts, causes the breakdown and deposition of corals and other organisms (González-Gándara, 2011; Armstrong-Altrin and Natalhy-Pineda, 2014). The decomposition of those organisms contributes to the increase and hauling of organic matter to the beaches, explaining the differences between the organic matter content in sediments of beaches nearby PNSAV with respect to La Mancha, farthest from reef system.

The Veracruz metropolitan zone receives a load of terrigenous sediments from fluvial systems, like the rivers Papaloapan, La Antigua, and mainly Jamapa (Salas-Pérez and Granados-Barba, 2008; Ortiz-Lozano and Bello-Pineda, 2012). There have been found surface seawater suspended sediments concentrations up to 22-32 mg L$^{-1}$ in the southern reefs (Carriquiry and Horta-Puga, 2010), increasing turbidity during the rainy season from July to October (Horta Puga et al., 2015). Nutrient inputs due to these fluvial and groundwater discharges (Finkl and Krupa, 2003) and high mean annual sedimentation rates of ~250 g m$^{-2}$ day$^{-1}$ (Pérez-España and Vargas-Hernández, 2008) may explain the greater percentages of organic matter in sediments of beaches located in the metropolitan zone compared to the reference beach.

Water temperature, salinity, and dissolved oxygen concentrations were similar across beaches, but varied significantly between sampling campaigns, evidencing its dependence on seasonal pattern (Fig. 3). Water temperature was higher, and salinity and dissolved oxygen concentrations were lower in September sampling. All pH values in water were very similar in all beaches and campaigns, averaging 7.5 in March and 7.7 in September.

These variables were according previous descriptions of the physicochemical coastal and littoral parameters in the area (Nava-Martínez et al., 2015; Perales-Valdivia et al., 2015). There may be local variations of these parameters in pore water, and the upper tidal level may have lower dissolved oxygen and salinity, but there were not found spatial differences in shallow water.

Fats and oils ranged between 164.75 mg L$^{-1}$ in La Mancha and 739.5 mg L$^{-1}$ in Villa del Mar, on average across campaigns (Fig. 4). Total solids fluctuated from 30.65 g L$^{-1}$ in Arroyo Jiote and 39.2 g L$^{-1}$ in La Mancha, to 41.25 g L$^{-1}$ in Mocambo and 49.5 g L$^{-1}$ in Villa del Mar during the September campaign. In March sampling, this gradient was not evident.

Concentrations of enterococci in pore water ranged from 1428.5 in Villa del Mar to 13.8 in Arroyo Jiote; La Mancha had intermediate values between those of Mocambo and Arroyo Jiote (Fig. 5). The textural characteristics of sediments were inversely related to densities of bacteria, as can be expected (Arrocena and Conde, 1999).

Therefore, the stress gradient was also evident in the values of enterococci concentrations, fats and oils and total solids in September, after an increase of the tourism activity, as stated by the Tourism Secretariat.
Urban beaches are more exposed to chronic poor hygienic conditions and environmental problems, such as the pollution of coastal waters by sewage drains without treatment or with incomplete treatment (Ortiz Lozano, 2012). In Villa del Mar, enterococci concentrations in pore water surpassed the threshold (most likely number (MLN) higher than 200 in 100 ml) of the health and quality criteria for recreational use, based on the National Water Commission of Mexico (2010).

March intertidal profiles in Villa del Mar and Mocambo were broader and less steep than in September (Fig. 6). In contrast, in Arroyo Jote and La Mancha they were steeper in March than in September. The intertidal slopes of the four analyzed beaches varied between samplings, indicating a seasonality of this parameter, as well as morphological differences between “natural” and modified by breakwaters. Differences between the intertidal profiles of both sites of the same beach were less evident. The intertidal slopes ranged from 0.0498 in Arroyo Jote in September (horn site) to 0.1992 in La Mancha in March (cusp site), which is consistent with that reported by Shepard (1973) for different mean sand particle sizes.

As tide variation was not relevant in this study, the sediments conditions and waves patterns were the main characteristics influencing morphodynamic profiles. Granulometric characteristics of sediments varied along the anthropic gradient and were similar between the unmodified beaches. Regarding waves influence, breakwaters are wave energy barriers that alter circulation patterns, flushing conditions and littoral sediment transport and dispersion. They induce longshore gradations in breaker wave height through
both wave attenuation and refraction (Short, 2006). Consequently, the typical modified beach is relatively short, with lowered waves at the shore in summer and more curvature in the beach through wave refraction. This could induce the formation of rip currents (Dalrymple, 1978) that create an erosive pattern in September. In March, the influence of longer period incident waves and trapped edge waves along the breakwaters (Dalrymple et al., 1986; Dean and Dalrymple, 2004) could be important in generating the observed dissipative profiles in modified beaches.

The magnitudes of littoral currents obtained in March and September, were 0.36 and 0.08 m s\(^{-1}\) in La Mancha, 0.18 m s\(^{-1}\) and 0 in Villa del Mar, 0.24 and 0.01 m s\(^{-1}\) in Mocambo, 0.15 and 0.11 m s\(^{-1}\) in Arroyo Joite, respectively (Fig. 7). The predominant direction obtained was southwest. Average Dean’s parameter (\&!\) per beaches in March was 21.08, 11.91, 9.45 and 7.93 in Villa del Mar, Mocambo, Arroyo Joite and La Mancha, respectively. In September sampling this gradient was not so evident, and varied from 10.76 in La Mancha to 5.19 in Villa del Mar, with intermediate values in Mocambo and Arroyo Joite.

Even though sandy beaches are one of the most resilient dynamic types of coasts, because of its ability to absorb wave energy (McLachlan and Brown, 2006), humans are having an increasingly adverse impact on many beach systems, threatening their suitability for conservation or recreation (McLachlan et al., 2013). Breakwaters and other coastal structures, such as jetties and groynes, contribute to modify wave-sediment processes in surf zones, as they change wave energy and direction, and limit shore normal sediment transport (Charlier et al., 2005; Dugan et al., 2011). This was evident in the two urban beaches modified by breakwaters, where there was virtually no littoral current in September sampling, although our spot metering does not allow making inferences about values of this variable. The temporal variability of currents in northern Veracruz coral reefs is dominated by strong episodic southeastward currents during autumn–winter, reaching more than 1 m s\(^{-1}\) and associated with the intrusion of atmospheric high-pressure systems into the Gulf of Mexico, some episodes of strong southeastward currents in spring–summer forced by low-pressure systems (tropical storms), and weak northwestward currents predominant from May to August, with speeds lower than 0.40 m s\(^{-1}\) (Allende-Arandía et al., 2016).

Even though the proximity of the beaches located in the metropolitan zone to a coral reef system oriented Northwest-Southeast, may partly protect against the combined effect of wind and waves, and influence circulation patterns (Salas-Monreal et al., 2009), the modification by breakwaters still seems to influence morphodynamic conditions, particularly in September. In Villa del Mar we found the greatest morphodynamic variability, with dissipative profiles in March (\Omega Index higher than 20) and intermediate conditions in September sampling (given the \&! Index lower than 6). Intermediate beaches have values of \&! ranging from 1 to 6 and are characterized by bar and rip morphology (Masselink and Short, 1993).

Conversely, La Mancha had almost intermediate morphodynamic state in March (\Omega=7.93) and dissipative in September (\Omega=10.76), reflecting a natural pattern. These contrasting patterns can be explained because high energy events like cold fronts can cause different short term environmental changes on microtidal exposed sandy beaches, depending on the
Impacts in sandy beaches

morphodynamic state, so erosive processes can operate more slowly and progressively in dissipative beaches, with a reduced capacity for recovery and rapid restoration of the beach profile (Short and Hesp, 1982; Dos Santos-Alves and Pezzuto, 2009).

CONCLUSIONS

This study provides a baseline of the environmental spatial-temporal variation in intertidal of sandy beaches of central Veracruz. Using this integrated approach, we found that some of the measured parameters accounted for the anthropic gradient, increased by the presence of breakwaters as a factor contributing to modify the natural morphodynamic conditions, and others accounted for natural variations. As stated by Lucrezi et al. (2016), integrated beach assessments are beneficial, in that they allow the establishment of a basic framework on which new and different visions can be engraved, according to the specific beach considered. Our study demonstrates how beach use and modification conditions are associated with more instability and lower system resilience, reflected as less capacity and rapidity to counteract human perturbations.

ACKNOWLEDGEMENTS

Special thanks to all colleagues that helped us during sampling campaigns and further processing at the Research Laboratory of Aquatic Resources of the Technological Institute of Boca del Río, Veracruz, and to the reviewers of the manuscript. To Secretariat of Foreign Affairs of the Mexican Government and CONACYT-Mexico for the scholarships granted for concluding PhD studies. This research was conducted under the Project: Bases for analysis and synthesis of coastal systems of Veracruz, of the RASZCOVPromep network.

REFERENCES

environmental effects, a focus on shore and nearshore structures. (In: Wolanski, E. and McLusky, D.S. (Eds.), Treatise on Estuarine and Coastal Science (pp. 17-41). Waltham MA: Academic Press.)

