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ABSTRACT: The study was carried out to develop an efficient approach for prediction the genotoxicity of
carbon nanotubes. The experimental data on the bacterial reverse mutation test (TA100) on multi-walled
carbon nanotubes (MWCNTs) was collected from the literature and examined as an endpoint. By means of the
optimal descriptors calculated with the Monte Carlo method a mathematical model of the endpoint was built
up. The model is represented by a function of: (i) dose (µg/plate); (ii) metabolic activation (i.e. with S9 mix or
without S9 mix); and (iii) two types of MWCNTs. The above listed conditions were represented by so-called
quasi-SMILES. Simplified molecular input-line entry system (SMILES) is a tool for representation of molecular
structure. The quasi-SMILES is a tool to represent physicochemical and / or biochemical conditions for
building up a predictive model. Thus, instead of well-known paradigm of predictive modeling “endpoint is a
mathematical function of molecular structure” a fresh paradigm “endpoint is a mathematical function of
available eclectic data (conditions) is suggested.
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INTRODUCTION
Among all elements important for nanoscience and

nanotechnology carbon maintains a special status
(Dinadayalane and Leszczynski, 2010). In 1996 two USA
and one British scientist received Nobel Prize for their
discovery of fullerenes. Twenty four years later, in 2010
detection and characterization of another type of
carbon nanostructure – graphene had again attracted
attention of the Nobel Committee and resulted in Nobel
Prize awarded to two Russian born researchers.
However, there are other distinctive types of carbon
nanostructure – carbon nanotubes - that were reported
long time before fullerene and graphene discoveries.

Remarkably, the existence of carbon nanotubes
(CNT) was described for the first time in 1952
(Monthioux and Kuznetsov, 2006). After almost quarter
of Century the next paper reporting carbon nanotubes
was published 1976 (Monthioux and Kuznetsov, 2006).

Unfortunately, these discoveries had not significantly
stimulated scientific community and only after the
eminent publication of Iijima in 1991 CNTs received
appropriate recognition (Iijima, 1991).

Carbon nanotubes could be divided into two
distinct groups: walled carbon nanotubes (SWCNTs)
and multi-walled carbon nanotubes (MWCNTs) (Iijima
and Ichihashi, 1993; Bethune et al., 1993).  It is believed
that the CTNs have the most notable industrial
prospects among the carbon nanostructures.  By now
various applications of carbon nanotubes have been
developed (Baughman et al., 2002). One of the fastest
growing areas includes their potential bio-applications
and this has already attracted significant attention.
Among important applications of CNTs are
biosensors, drug and other delivery systems, and
bioimaging (Liu et al., 2011; Sinha and Yeow, 2005; Lu
et al., 2009; Huang et al.,  2011).  However, there is
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another aspect of nanoaplications. The fast progress in
nanoscience and nanotechnology is followed by
concerns about short and long effects of nanospecies
on human health and environment. This requires
thoughtful studies and development of techniques that
could provide desired information in fast and efficient
way, before moving new nanomaterials into production
lines and supermarket shells.

Quantitative structure – property / activity
relationships (QSPRs/QSARs) approaches have been
developed and applied to combine and take advantage
of efficiency of computational methods and knowledge
(sometime limited) set of experimental data. Application
of such approaches opens a prospect to define and
develop preferable substances to be used for solving
various practical tasks  (Castillo-Garit et al., 2007;
Afantitis et al., 2011; Furtula and Gutman, 2011; García
et al., 2011; Luan et al., 2014; Kleandrova et al., 2014a,b;
Speck-Planche et al., 2015). The QSPR/QSAR prediction
of desired (or hazardous) parameters of a given
substance is based on characteristics of its molecular
structure. Such predictions have been successfully
carried out for standard chemical compounds for almost
70 years and resulted in development of a number of
new, efficient drugs.

On the other hand, predictions for an important class
of species - nanomaterials have been known to create
fundamental challenges for the QSPR/QSAR community.
The development of systematic representation for
various nanomaterials remains a complex task since the
molecular architectures of these substances are very
atypical, in comparison with structures of traditional
substances (Leszczynski, 2010; Rallo et al., 2011;
Dinadayalane et al., 2012; Roca et al., 2012; Liu et al.,
2013).  There are also additional barriers. The advance
of traditional QSPR/QSAR analyses for nanomaterials
is limited due to the absence of standardized databases
for their structures, aligned together with
physicochemical and biomedical endpoints. Fortunately,
in the case of selected nanomaterials the data on various
conditions related to the impact of these substances
upon biological objects are available in the literature.
This has facilitated creative modification of the standard
techniques and as the consequence,  the quasi-QSAR
approach was introduced as an alternative to the
traditional QSPR/QSAR (Toropova and Toropov, 2013;
Toropova and Toropov,  2014;  Toropov and Toropova,
2014). In this approach instead of the representation of
a substances by molecular structure the description of
the considered species by the above-mentioned
available eclectic information becomes possible. In fact,
the optimal descriptors calculated with so-called
correlation weights of various attributes of
nanomaterials could provide a tool to build up the quasi-

QSAR. Since the approach is devoted to nanomaterials
these quasi-QSARs can be named “nano-QSARs”.

Let us summarize the novel features of this
approach. One recognizes that the innovative, possible
way to build up predictive model related to nanomaterials
is application of the new paradigm: “Endpoint = F
(Available eclectic data)”, instead of traditional paradigm:
“Endpoint = F (Molecular structure)”.

The aim of the present work is the investigation of
the application of optimal descriptors as possible
contributions towards building up predictive model for
genotoxicity of multi-walled carbon nanotubes
(MWCNTs). Various conditions (concentration,
presence / absence of S9 mix, different types of
MWCNTs) are represented by quasi-SMILES (Toropov
and Toropova,  2015). These quasi-SMILES are basis to
build up predictive model according to paradigm
“Endpoint = F (Available eclectic data)”, by means of
the CORAL software (Toropova and Toropov,  2014).

MATERIALS & METHODS
The experimental data on the genotoxic potential

of two products of multi-walled carbon nanotubes
(coded as N-MWCNTs, diameter of 44 nm/BET surface
area of 69 m2/g and MWNT-7, diameter of 70 nm/BET
surface area of 23 m2/g) were taken from the literature
(Ema et al., 2012). Table 1 contains experimental data
related to genotoxicity of MWCNTs. Various codes,
related to the conditions which were considered for
building up nano-QSAR models, are provided in the
Table 2. The details of calculations are given in the
Table 3. This table contains specifics of three random
distributions of the experimental information. The
experimental data was divided into the training,
calibration, and validation sets.

Each of the data sets has an important function.
The training set contains data which are directly
involved in building up models. Data from the
calibration set serve to avoid the overtraining. The
data from validation set is used at the end of
calculations to test predictive potential of the
developed models models.

The optimal descriptors used in this study are
calculated as follows:

)()()(),( kkk ACWSSCWSCWNTDCW     (1)

Where Sk and SSk are fragments of quasi-SMILES
which contain one and two symbols, respectively;
Ak is a code of an attribute of MWCNTs (Table 2);
the CW(Sk) and CW(SSk) are correlation weights of
the above-mentioned quasi-SMILES attributes. The
correlation weights of attributes are calculated with
optimization carried out by the Monte Carlo
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technique. The correlation weights should provide
maximal value of the correlation coefficient between
the DCW(T,N) and experimental TA100. The T and
N are parameters of the optimization: T (threshold)
is coefficient for classification of attributes into two
categories: rare and not rare. Correlation weight for
rare impact is fixed equal to zero. Therefore rare
attribute are not involved in building up a model.
The N is the number of epochs of the Monte Carlo
optimization. There are T* and N* parameters which

give preferable statistics for the calibration set
(Toropova and Toropov, 2014).  These values are
used to build up model.

Having data on optimal correlation weights, one
can (i) calculate DCW(T*,N*) for all fullerene C60
nanoparticles; (ii) calculate (with data on the training
set) a model for TA100:

*)*,(100 10 NTDCWCCTA                             (2)

The model should give preferable statistical
quality for the calibration set (i.e best quality for a
preliminary external test set); and (iii) predictive
potential of the model should be checked up with an
external validation set. The MWCNTs of the validation
set are not involved in building up model.

RESULTS & DISCUSSION
The statistical quality of models for TA100 calculated

by the Monte Carlo technique (using the CORAL
software, http://www.insilico.eu/coral) is the following:
Split 1
TA100 =  82.40 (± 2.325) +  7.543 (± 0.482)                 (3)
* DCW(2,9)
n=20, r2=0.5340, s=6.02, F=21 (training set)
n=5, r2=0.6586, Rm

2=0.556, s=9.9 (calibration set)
n=5, r2=0.6131, s=3.94 (validation set)

Table 1. Experimental data and conditions on bacterial reverse mutation tests on multi-walled carbon
nanotubes (Ema et al., 2012).

Test substance Concentration,
µg/plate

S9Mix The average number of
revertant colonies / plate, TA100

N-MWCNTs 0.78 - 120
1.56 - 109
3.13 - 119
6.25 - 116
12.5 - 114
25.0 - 109
50.0 - 114

100.0 - 117
N-MWCNTs 0.78 + 105

1.56 + 115
3.13 + 114
6.25 + 127
12.5 + 133
25.0 + 120
50.0 + 125

100.0 + 128
MWNT-7 0.78 - 111

3.13 - 118
6.25 - 122
12.5 - 123
25.0 - 118
50.0 - 121

100.0 - 121
MWNT-7 0.78 + 126

3.13 + 114
6.25 + 135
12.5 + 124
25.0 + 124
50.0 + 108

100.0 + 134

Table 2. List of attributes (conditions) related to the
genotoxicity of multi-walled carbon nanotubes

(MWCNTs)

Attribute Codes of attributes (Sk) and
their meaning

Test substance 1 = N-MWCNTs
2 = MWNT-7

Mix S9 + = with Mix S9
- = without Mix S9

Concentration
(µg/plate)

A = 0.78
B = 1.56
C = 3.13
D = 6.25
E = 12.5
F = 25.0
G = 50.0

H = 100.0
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Split 2
TA100 =  102.1 (± 0.93) +    6.652 (± 0.255)                 (4)
* DCW(2,33)
n=18, r2=0.6270, s=5.37, F=27 (training set)
n=5, r2=0.7898, Rm

2=0.5269, s=6.11 (calibration set)
n=7, r2=0.5289, s=6.25 (validation set)
Split 3
TA100 =  87.82 (± 1.0481) +                                          (5)
9.832 (± 0.2644) * DCW(2,33)
n=20, r2=0.6395, s=5.14, F=32 (training set)
n=5, r2=0.7306, Rm

2=0.5304 s=6.80 (calibration set)
n=5, r2=0.5662, s=5.66 (validation set)

The Rm
2 is criterion of predictive potential of a

model according to the literature (Roy et al., 2009): a
model has predictive potential if Rm

2is larger than 0.5.

Unfortunately, the total number of experimental
data available for the nano-QSAR analysis is limited to
30. As the result, the statistical quality of the model is
not high for the training set. However, even with this
limitation each model has the predictive potential, since
the range of correlation coefficients for validation sets
spans from 0.52 to 0.61. It is expected that the application
of the approach for similar data with n>30 would provide
improved statistics.

There is a peculiar feature of the models developed
here. Interestingly, the similar, uncommon situation for
QSAR approach has been noted previously for modeling
carcinogenicity of organic compounds (Toropova et al.,
2011).  A group of compounds being in the “visible”
training set was classified as outliers, however, the
removal of these compounds leads to the decrease of
the statistical quality of the model for the “invisible”
validation set. The behavior of these compounds was
classified as atypical (Toropova et al., 2011).

In the case of current study the quasi-SMILES #9,
#13, #24, and #29 (Table 3) have similar atypical
behavior. In fact, they are outliers even as members of
the “visible” training set, however, removal of these
quasi-SMILES leads to decrease of the predictive
potential of the model for “invisible” validation set. Table
4 contains the correlation weights for different attributes
of quasi-SMILES and lists of blocked (correlation weight
is equal to zero) and active attributes (correlation weight
is not equal to zero). Based on the obtained results, an
ability of the applied approach to involve eclectic data to
build up predictive model of genotoxicity for MWCNTs
is demonstrated. The details concerning the correlation
weights applied for calculation of the quasi-SMILES
attributes with Eqs. 3, 4, and 5 using the Monte Carlo

Table 3. Three distributions of available experimental  data into the training (T), calibration (C), and validation
(V) sets; quasi-SMILES representing genotoxicity by MWCNTs, experimental and predicted TA100 values

(average number of revertant colonies / plate)

ID Distribution quasi-SMILES TA100
1 2 3 Experiment Eq. 3 Eq. 4 Eq. 5

01 C V T 1-A 120 107.59 115.07 114.86
02 T T T 1-B 109 103.41 108.99 108.07
03 C T T 1-C 119 108.72 113.66 118.91
04 V T C 1-D 116 117.71 118.03 121.21
05 T C T 1-E 114 116.04 122.16 117.56
06 T V C 1-F 109 111.70 117.18 108.07
07 T C T 1-G 114 114.70 119.83 116.95
08 V T V 1-H 117 117.76 120.14 120.02
09 T T T 1+A 105 116.85 115.58 116.04
10 V T V 1+B 115 108.56 115.00 122.78
11 V V T 1+C 114 113.87 119.67 114.69
12 V V C 1+D 127 122.86 136.40 135.92
13 T T T 1+E 133 128.01 128.17 128.93
14 C C V 1+F 120 112.71 123.19 122.78
15 T T T 1+G 125 116.91 116.47 117.05
16 C T V 1+H 128 122.91 130.72 134.73
17 T C T 2-A 111 113.26 117.07 116.31
18 T V C 2-C 118 114.40 115.66 120.35
19 T T T 2-D 122 123.39 120.03 122.66
20 T C T 2-E 123 121.72 124.17 119.00
21 T T C 2-F 118 117.38 119.18 109.52
22 T T T 2-G 121 120.38 121.83 118.39
23 T V T 2-H 121 123.43 122.14 121.46
24 T T T 2+A 126 120.34 115.43 114.98
25 T T T 2+C 114 117.36 119.52 113.64
26 T T T 2+D 135 126.35 136.24 134.86
27 T V T 2+E 124 131.49 128.02 127.87
28 C T V 2+F 124 116.20 123.04 121.73
29 T T T 2+G 108 120.39 116.31 115.99
30 T T T 2+H 134 126.39 130.56 133.67
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Table 4. The correlation weights for quasi-SMILES attributes calculated by the Monte Carlo method for three
random splits of data (Table 3) into the training, calibration, and test sets.

Attribute,  A CW(A) Attribute,  A CW(A) Attribute,  A CW(A)
+ 1.44119 + 1.92695 + 1.61180
- 0.89420 - 1.40004 - 0.41596

1+ 1.13631 1+ 1.56350 1+ 0.90985
1- 1.00067 1- 1.24750 1- 0.60952
1 0.89162 1 0.95046 1 1.03473

2+ 1.24931 2+ 1.07061 2+ 0.98698
2- 1.40391 2- 1.05113 2- 0.94103
2 1.24072 2 1.40466 2 0.85008

A+ 0.54591 A+ -1.00773 A+ -0.64808
A- 0.0 A- 0.0 A- 0.72822
A 0.55355 A -0.78982 A -0.03762
B- 0.0 B+ 0.0 B- 0.0
B 0.0 B- 0.0 B 0.0

C+ 0.0 B -1.85257 C+ -1.92489
C- 0.0 C+ 0.0 C- 0.0
C 0.70401 C- 0.0 C 1.10212

D+ 0.0 C -1.22743 D+ 0.0
D- 0.0 D+ 0.0 D- 0.0
D 1.89555 D- -1.88531 D 1.33627
E+ 1.45088 D 1.19837 E+ -0.07847
E- 0.54723 E+ 0.0 E- 0.26168
E 1.12725 E- 0.0 E 0.70326

F+ 0.0 E 0.0 F- 0.0
F- 0.54823 F+ 0.0 F 0.0
F 0.55058 F- 0.0 G+ -0.54572

G+ 0.55170 F -0.67340 G- 0.94043
G- 0.94207 G+ -1.32532 G -0.03795
G 0.55459 G- 0.0 H+ 0.0

H+ 0.0 G -0.34880 H- 0.0
H- 0.0 H+ 0.72720 H 1.21506
H 1.90176 H- 0.0

H -0.29802

Table 5. Example of calculation of the optimal
descriptor for quasi-SMILES represented by symbols

“1-A” for the case of split 1

Attribute,  A CW(A)
Sk
1 0.8916
- 0.8942
A 0.5535

SSk
1- 1.0007
A- 0.0

DCW(2,9 )= CW(A)= 3.3400

method are provided in the Table 4. Table 5 contains an
example of the calculation of the DCW(2,17) for Eq. 3
(Split 1). This representative example illustrates the
applied methodology.  We believe that the considered
here approach has broader applications to various groups
of nanomaterials.

CONCLUSIONS
This study reports development of computational

models for the genotoxicity of carbon nanotubes. It is
based on experimental data on the bacterial reverse
mutation test (TA100) on multi-walled carbon nanotubes
(MWCNTs). The approach used here resulted in semi-

quantitative prediction for three different distributions
of the experimental data into the visible training and
calibration sets, and invisible validation set. The
predictive potential of these models is different. It is
noticed that in the developed models there are also
quasi-SMILES (i.e. representations of combinations of
conditions, Table 3) characterized by “atypical” behavior:
even when included in the training set they are outliers.
However the removing of those quasi-SMILES leads to
decrease of predictive potential of the models.
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