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ABSTRACT: Air quality is a topic of crucial importance, because air pollution is one of the most important
pollution problems in the world. In particular, predicting or detecting a future extreme air pollution episode or
predicting the violation of an air quality standard, is of crucial interest in the field of pollution control. There
have been a variety of attempts to reach this purpose both from the perspective of the extreme value theory
and the time series analysis, but as far as we know there is none successful strategy to alert of violations of the
standards. This is why in this article we propose a new strategy, a threshold autoregressive asymmetric
stochastic volatility strategy to alert of an immediate violation of the particulate matter quality standards,
which take into account the different answer of the volatility to a positive or negative, but equal in magnitude,
relative variation of the level of the pollutant in the previous period. Particulate matter is one of the still
uncontrolled pollutants in big cities. This novel approach has been applied in Madrid City (Spain), the third-
most populous municipality in the European Union, and it is able to predict a great percentage of violations of
the standard.
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INTRODUCTION
Air quality is a topic of crucial importance, because

air pollution is one of the most important pollution prob-
lems in the world. Many health problems (e.g., respira-
tory and cardiovascular) can be caused or worsened
by exposure to air pollution on a day-to-day basis. The
level of severity of these effects varies from advancing
the day of death to less serious morbidity such as in-
creased use of inhalers by asthmatics (Ayres, 2002).
Epidemiological studies in the USA, continental Eu-
rope and the UK suggest that approximately 1% extra
deaths may be brought forward by every 10 µg/m3 in-
crease in airborne particulate matter with a mass me-
dian diameter less than 10 µm (PM10); it is estimated
that particles contribute to around 8,100 deaths per
year in urban areas of Great Britain (Ayres, 2002). There-
fore, it is not surprising that the World Health Organi-
zation (WHO) has ranked the urban air pollution the
13th contributor to global deaths in its 2002 World
Health Report.

In particular, predicting or detecting a future extreme
air pollution episode or alert of an immediate violation
of an air quality standard, is of particular interest in
the field of pollution control. This is de reason why
these two research fields are subjects of environmen-
tal concern.

The most widely used procedure to predicting or
detecting a future extreme air pollution episode are
extreme value models. One of the pioneers applica-
tions of the theory to air pollution is by Roberts [1979a
and 1979b], who presents an application to SO2 and
NO2 data in the Long Beach area, CA, USA. Surman et
al. (1987) studied the ozone and applied the theory in
Brisbane, Queensland, Australia. Smith (1989) pro-
posed some extensions of the extreme values theory
based on the point-processes view of high-level
exceedances, and they were illustrated with ozone data
collected in Houston, Texas. Sharma et al. (1999) pro-
vided predictions of the expected number of viola-
tions of the National Air Quality Standards of India
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for carbon monoxide concentrations from an urban road
intersection. Ercelebi and Kirmanli (1999) predicted
methane concentration in an underground mine envi-
ronment. Lu and Fang (2003) applied the lognormal,
Weibull and type V Pearson distributions to fit the
parent distribution of the PM10 at five air monitoring
stations in Taiwan from 1995 to 1999. Kan and Chen
(2004) dealt with extreme value distributions for fitting
the daily average concentration data of PM10, SO2, and
NO2 data in Shanghai. Hurairah et al. (2005) applied a
new extreme value model to carbon monoxide data in
Malaysia. Sfetsos et al. (2006) modeled daily PM10
concentration values from an industrial area in
Macedonia. Achcar et al. (2008a) considered the prob-
lem of estimating the number of times an air quality
standard is exceeded in a given period of time; the
theoretical development was applied to the measure-
ments provided by the monitoring stations of Mexico
City. Erceleby and Toros (2009) recently applied the
extreme values theory to data of hourly SO2 and NO2
obtained from two permanent stations in Istanbul.

Linear and non-linear regression models have also
been widely used for predicting future extreme air pol-
lution episodes, overall in the ozone case (Robeson
and Steyn, 1990, Hubbard and Cobourn, 1998, and
Chaloulakou et al., 1999, are some interesting works in
the past). Classification and regression trees models
(Burrows et al., 1995) and neural networks (Baxt and
White, 1995, van Aalst and de Leeuw, 1997, Comrie,
1997, and Gardner and Dorling, 2000, are good refer-
ences in the past. Sharma et al. (2003), Wang and Lu
(2006), Rost et al. (2009), and Barai et al. (2009) are
recent recommended references) are other of the sta-
tistical procedures used to tackle this topic. However,
they seem not to be a prominent research line nowa-
days. Canonical analysis and other techniques related
with linear models have also been sporadically used
with a certain success.

On the contrary, the more promising approach to
the prediction, detection or alerting of a future extreme
air pollution episode is time series analysis and, spe-
cifically, the use of volatility models. Time-varying vola-
tility has been naturally relevant, topical, useful and
interesting for modeling and forecasting financial data.
The explosive growth of applications of econometrics
to finance is due primarily to the increased availability
of financial data, increased computer power and, of
course, the greater interest in the performance of fi-
nancial markets in economic discussions. But finan-
cial markets are not the only area where volatility plays
an important role. Volatility, and over all extreme vola-
tility, is relevant in other areas such as volcanic activ-
ity, the occurrence of earthquakes and tsunami, the
evolution of weather patterns (such as temperature,
wind, rainfall, motion of waves, and solar activity) and

environmental factors, such as air, water and soil pol-
lution, among others.Fortunately, the two last decades
have witnessed the increased availability of data about
pollution measurements, mainly in big cities. This is
why quantitative research is paying more and more
attention to volatility of pollution data (without vola-
tility, many temporal and spatial environmental vari-
ables would simply be constants) and to the modeling
of such a volatility. Therefore, volatility also matters in
the environmental field, and hence needs to be speci-
fied, estimated, tested and forecasted.

The different statistical models used to model air
pollution data include time series modeling of the daily
or weekly average pollution data (see for example,
Loomis et al., 1996; or Achcar et al., 2008b). In this
way, the use of stochastic volatility models (SV) has
many advantages to analyze time series since they
assume two processes to model the series: a process
to model the observations and a process to model the
latent volatilities  (see for example, Ghysels et al., 1996;
Kim et al., 1998; Meyer and Yu, 2000). This family of
models have been extensively used to analyze finan-
cial time series (see for example, Danielsson, 1994; Yu,
2002), as a powerful alternative for the usual existing
ARCH type models introduced in the seminal paper on
AutoRegressive Conditional Heteroskedasticity
(ARCH) models by the 2003 joint Nobel Laureate in
Economic Sciences, Engle (1982), which was subse-
quently generalized (GARCH modeling) in Bollerslev
(1986), among others.

Another interesting approach frequently used to
analyze SV models is Bayesian inference approach
using Markov Chain Monte Carlo (MCMC) methods
(see for example, Gelfand and Smith, 1990; Smith and
Roberts, 1993). This approach allows overcoming great
difficulties using standard classical inference approach,
as high dimensionality, likelihood function with no
closed form and high computational cost. Recently,
Gyarmati-Szabó et al. (2008) have introduced the use
of bivariate stochastic volatility models applied to air
pollution data. In particular, they develop the Baye-
sian analysis using Markov Chain Monte Carlo
(MCMC) methods to simulate samples for the joint
posterior distribution of interest.As far as we have
checked, relative variations in high frequency data in
pollution are no significantly different from their finan-
cial analogous: constant and statistically null mean,
and  non  constant variance with high volatility peri-
ods that alternates with others of low volatility (that is
to say, there are evidence of volatility clusters).

But neither the above mentioned GARCH model
nor the ARSV models are able to capture (or to appro-
priately capture) the stylized facts of financial series
that are shared by the pollution series we have exam-
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ined: persistence in volatility, Taylor effect, leverage ef-
fect, etc. This is the reason why it has emerged a wide
range of derivations of GARCH and ARSV models that
try to capture the above-mentioned stylized facts. This
article focuses in a extremely important stylized fact in
the environment field –the asymmetric answer of pollu-
tion volatility to shocks of equal relative magnitude but
of different sign– and proposes an original model, the
Threshold Asymmetric Autoregressive Stochastic Vola-
tility Model (TA-ARSV model), to analyze that stylized
fact. Thresholds were included in stochastic volatility
models by So et al. (2002), and they have been recently
developed by García and Mínguez (2009). As far as we
know, it is the first time that a TA-ARSV model is used in
the environment field.
In cases where the level of a particular pollutant is close
to the standard, TA-ARSV strategies could be a guide
for the authorities with competencies in pollution con-
trol that would avoid taking unnecessary and costly
measures for citizens and companies through distin-
guishing between false and true alarms of violation of
the air quality standards. It also would help them to
avoid violations of the standards by taking the appro-
priate measures days before to the potential violation.

In particular, in this article a TA-ARSV strategy is
used to help the authorities to prevent violations in
particular matter (specifically PM10) standards. Particu-
late matter (PM) is the term used for a mixture of solid
particles and liquid droplets suspended in the air.
These particles originate from a variety of sources,
such as power plants, industrial processes, and diesel
trucks, and they are formed in the atmosphere by trans-
formation of gaseous emissions. Their chemical and
physical compositions depend on location, time of
year, and weather.

Particulate matter is one of the six criteria pollut-
ants, and the most important in terms of adverse ef-
fects on human health. This makes it especially dan-
gerous and this is the reason that many epidemiologi-
cal studies of PM health effects have been completed.
Especially particles that are smaller than 10 microns
(PM10), are likely to cause adverse health effects in-
cluding increasing morbidity and mortality in suscep-
tible individuals. In particular, the lifetime of PM10 is
from minutes to hours, and its travel distance varies
from less than 1km to 10 km. This is why governments
have made great effort to maintain this pollutant under
control. But, despite the significant improvements made
over the last three decades, PM10 continues to exert a
public health impact.

This is precisely the case of Madrid, the study
site in this article. Whereas in the last years SO2 and
CO seems to be under control, and measures to reduce
the level of other pollutants have been certainly suc-

cessful, PM10 continues to be one of the air pollution
problems that most worry the Madrid Municipality. In
accordance to the current legislation, levels of PM10
are not satisfactory in Madrid City, although it is true
that PM10 levels in Madrid have an important anthro-
pogenic component: Saharan winds.

MATERIALS & METHODS
The data used in this paper have been provided by

the Atmosphere Pollution Monitoring System of Madrid
municipality, Spain, the third-most populous municipal-
ity in the European Union (Fig. 1). They have been
hourly measured at the 25 fixed operative monitoring
stations since January 2000 until December 2008, and
normalized to the temperature of 293 K and to the pres-
sure of 101.3 kρ2. Subsequently, we have computed daily
means, to be able to compare the volume of the pollut-
ant with the daily standard of Madrid City. Fig. 2 shows
the locations of the air quality monitoring stations.

As can be seen in Fig. 2. most monitoring stations
are located in the urban centre and relatively few in the
peripheral sites. Note the reasonable coverage of the
domain under study by the monitoring stations since
most of Madrid population is concentrated in the ur-
ban centre.

The data base had some gaps due to breakdowns
in the monitoring stations, the change of location of
some of them, etc. These gaps ranged from one day to
two months and it has been used an ordinary func-
tional kriging (OFK) strategy for filling them, because
it is considered the most appropriate strategy for pre-
dicting the values in long periods of time in a spatial
framework. Other alternatives are universal kriging and
cokriging, but the “leave one out” procedure shown
that these non-functional alternatives provided greater
mean square errors than the functional one.

OFK is an adaptation of Giraldo (2009) of the func-
tional analysis recently developed by Ramsay and
Silverman (2005) that tackles the problem of spatial
prediction of functional data. In OFK strategy, the pre-
dicted curve is a linear combination of the observed
curves in other locations (in our case monitoring sta-
tions) where the coefficients are real numbers.
The statistical statements are as follows: Let us con-

sider a functional random process : dD∈ ⊆sχ s ,

usually d=2, such that sχ is a functional variable for

any D∈s . Let 1 2, , , ns s sK be arbitrary locations in D
(in our case the sites where the monitoring stations
are located), and assume that we can observe a realiza-
tion of the functional random process sχ at these sites,

1 2
, , ,

n
χ χ χs s sK .
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 Fig. 1. Location of Madrid City

 
Fig. 2. Madrid City. Location of the air quality monitoring stations

Observe that the unbiasedness constraint and Fubini
Theorem imply that

On the other hand, the integral in the above equation
can be written as:
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The predictor we propose has the same expression as
the ordinary kriging one (Cressie, 1993) but with curves
instead of variables:

That is to say, this approach treats the whole curve
as a single entity, and the weights in the predictor give
more influence to the curves of locations closer to the
prediction point, 0s , than other separated. To find the
best linear unbiased predictor (BLUP) we extend the
criterion given in Myers (1982) to the functional case,
assuming second-order stationarity and isotropy in the
random process (this is the case in the light of the data
base), and the n weights in the kriging predictor of

0sχ are given by the solution of the following optimiza-
tion problem:
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where ( )ijC t is the value of the spatial covariance func-
tion for the observed locations is and js , ( )0iC t  is
the analogous for the observed location  and the un-
observed site , and  is the variance of the random pro-
cess.
As a consequence, the objective function can be ex-
pressed as:

The result of the optimization process, in matrix nota-
tion, is the following one:

The prediction variance can be easily obtained from
the first n equations of the above system of equa-
tions:

Once the data base gaps have been filled, f data have
been daily averaged or each hour. Table 1 displays the
range, mean, and standard deviation of daily averaged
PM10 values in the period under study.

µ/m3; Source: Own elaboration.

After presenting the kriged strategy to complete the
series of PM10 in the period under study, in the sequel

(2)

Table 1. PM10: Main descriptive statistics
(whole monitoring stations net). 2000-2008
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we proceed to develop the TA-ARSV model we pro-
pose as a useful tool for alerting of violations of the
PM10 standard.
As it can be shown, the relative variation of the magni-
tude of pollutants is characterized by both a changing
conditional variance and a mean statistically equal to
cero. This is the reason why it is possible to model its
behavior as follows:

where tσ , the volatility, has a dynamic structure and it
is assumed to be generated by a stationary process,
so that its value at period t depends on the previous
information (Ωt-1). εt is a random disturbance (white
noise), independent of σt, which is distributed with
zero mean, unit variance and finite fourth order
moments.
As said before, GARCH and ARSV models have been
traditionally used to model the changing conditional
variance over time. But they are not able to explain the
possible asymmetric answer of volatility, and this is
the reason why in this paper we propose as an
alternative the Threshold Autoregressive Asymmetric
Stochastic Volatility (TA-ARSV) model to explain
pollutant dynamics.
TA-ARSV model includes two new parameters in the
volatility equation of ARSV model, φ11 and φ12, to capture
the asymmetric behavior of volatility. They measure
the effect of a positive and a negative relative variation
of the same magnitude in the instant t-1, respectively,
on the volatility of the relative variation of the
magnitude of a particular pollutant in instant t.
Additionally, it is necessary to define the two following
indicator matrices:

Specifically, the TA-ARSV model we propose is the
TA-ARSV(1), because the estimated ACF and PACF
computed for  several air quality data bases have
shown that it is only necessary one lag to explain the
dynamics of volatility. TA-ARSV(1) is defined by the
following equations:
  • Mean equation:

In particular, the steps of the algorithm are:

a) To obtain an initial Gaussian model for an initial
vector of the parameters of the model. The initial val-
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   Eqution (7) shows that the logarithm of the squared
relative variation of the pollutant magnitude is obtained
as the sum of a constant and two independent
stochastic processes. These processes are the volatility
(ht), which is a stationary linear process, and the random
disturbance (ξt), which follows Chi-square distribution
with one degree of freedom. Note that this equation is
the well-known measurement equation in terms of a
state-space modeling.
Equation (8), the transition equation in a state-space
strategy, represents the dynamics of the volatility along
the time. Its behavior in the instant t depends on:
 a)Whether there has been a positive on negative
relative variation of the magnitude in t-1.
  b) The magnitude of volatility in the previous period.
     c)And finally, the innovation, which is assumed to

follow a ( )20,N ησ  distribution and to be uncorrelated

with the mean equation disturbances.

Therefore, the TA-ARSV(1) strategy can be rewritten
in a state space form as follows:

(7)2 2
*log( ) log ( )t t t tY y hσ ξ= = + +

  •  Volatility equation:

where, yt is the variation in the relative magnitude of
the pollutant; *σ  is a positive scale factor, εt is a ran-
dom disturbance (white noise) in the mean equation
that follows a zero mean and unit variance Gaussian
distribution, tσ  is the volatility and it is modeled as
an exponential function to guarantee its positivity, and
ht denotes the log-volatility. Equation (6) indicates that
the log-volatility follows an AR(1) process in each re-
gime; ηt is a white noise process and it follows a
Gaussian distribution with zero mean and variance 2

ησ ;
The distributions of tε and ηt are independent t,s. It
is also assumed that the disturbances of mean and
volatility equation are independent. The values of φ11
and φ12 are less than one in absolute terms to assure
that both regimes are stationary in covariance.

In can be noticed that in the TA-ARSV(1) model,
in equation (5), volatility is defined as an exponential
function, which implies that the model is non linear.
However, as shown in Sandmann and Koopman, 1998,
a simple logarithmic transformation turns it into a lin-
ear model. The transformed model is:
     • Mean equation:

     •  Volatility equation:
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( )2
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(8)

ues of the parameters are estimated from the available
information.
b) To compute the Gaussian likelihood function for the
initial model by using the Kalman filter.
c) Repeat steps a) and b) until the desired level of
convergence is achieved.

Finally, the parametric vector that maximizes the
simulated likelihood function is obtained by using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method,
a well-known method to solve unconstrained nonlin-
ear optimization problems. The leverage effect is
checked by testing the null hypothesis: Ho: φ11=φ12
(both regimes have equal coefficients) against the al-
ternative: H1: φ11 ≠ φ12. Since the TA-ARSV(1) model
encompasses the ARSV(1), this test can be viewed as
testing the ARSV(1) model against  the TA-ARSV(1)
strategy.The fact that both the null and the alternative
hypothesis refer to two nested models allows for the
implementation of a likelihood ratio test, the test sta-
tistic being 2 (ln ln )RL Lλ = − − , which follows a chi-
squared distribution with one degree of freedom.In
case that the null hypothesis is not rejected, then there
is not evidence of an asymmetric answer of volatility.
In this case the ARSV(1) model is the right model. Al-
ternatively, the rejection of the null hypothesis sug-
gests a different effect of positive and negative shocks
on the dynamics of the volatility.

RESULTS & DISCUSSION
From the observation of the estimates of param-

eters φ11 and φ12, which capture the asymmetric behav-
ior of volatility in PM10 daily series in every one of the
monitoring stations that have been operating in Madrid
City during the period under study (Fig. 3). it can be
deduced that there is not a general behavior across
the monitoring net during the period 2000-2008. That
is to say, in some of the monitoring stations φ11 ex-
ceeds φ12, and in others it occurs just the opposite.

where

Provided that TA-ARSV(1) is a non Gaussian model,
the estimation of  the parametric

vector
( )2

11 12 *, , , ηφ φ σ σ
 requires that the  likelihood

function is evaluated by using the Monte Carlo method
due that it approximates non Gaussian models by
importance sampling.

1 Φt
t t t

t

h
h u

Y
δ+⎛ ⎞

= + +⎜ ⎟
⎝ ⎠
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According to Section 2, those coefficients measure the
effect of a positive and a negative relative variation of
the same magnitude of PM10 in the instant t-1, respec-
tively, on the volatility of the relative variation of the
magnitude of the pollutant in instant t.  It can be also
noticed that the estimates of both parameters are posi-
tive, which indicates a positive relation between the
volatility in two consecutive instants of time.

In particular, φ11 exceed φ12 in the South part of the
city, which is characterized by its high density of in-
dustrial parks and an intensive build-up. The main
sources of PM10 in this area are local re-suspension
(the aridity of this part of the city give room for a clus-
ter of factors that jointly favors this phenomenon); a
poor vegetal coverage jointly with the fact that most of
cultivation next to the South part of the city are dry-
farmed crops, which maintain almost all year the soil
exposed to the wind action;  a low level of precipita-
tions, that also helps to maintain the soil dry and sub-
ject to erosion; an intense convective dynamics in-
duced by a high insolation over unprotected soils in
spring and summer; and construction and demolition,
a crucial  factor in Madrid City, due to the intensive
construction in the area during the two last decades.
On the contrary, φ11 is lesser than φ12 in the city centre
(extensive in pedestrian areas) and the North part of
the city, where a handful of institutions are located, the
income level is certainly high, build-up is dispersed
and green areas characterizes the zone. However, the
level of PM10 in he city centre, despite to be a pedes-
trian area, is extremely affected by the worse traffic
that characterizes the surrounding areas.There is a par-
ticular source that affects the entire city: the long dis-
tance transport of mineral powder coming from Sahara
or Shael. On the other hand, it is not negligible the
effect of punctual accidents such as urban fires near to
the monitoring stations or even forest fires in areas
relatively remote from them.

The fact that the estimated value of φ12 does not
exceed the estimated value of φ11 (in the South part of
the city) implies that the effect on volatility is greater in
case that the relative variation of the level of PM10 in-
creases than in case that it diminishes. Thus, neglecting
the effect that other variables not considered in the analy-
sis can have on the behavior of the level of PM10, in case
of a level close to the standard and a relative increment
with respect to the previous period, authorities must be
alert because there is a high probability that the stan-
dard will be exceeded in the next period. Additionally,
the estimate of φ11 is always very close to the unity (there
is no cases with φ11 equal to the unity, that is to say the
processes are stationary), which implies that high vola-
tility in t-1 will lead to high volatility in t, and it reinforces
the above stated thesis.It occurs just the opposite in
the city centre and the North part of the city: the esti-
mates of φ11 are greater than the estimates of φ12, and
they are certainly close to the unity. This implies that
an increment in the magnitude of PM10 in period t-1, in
a tessitura of high volatility, is not so worrying, in terms

of a violation of the standard in period t, as it is in the
South part of the city. However, environmental au-
thorities must be worried with small decreases of the
level of the pollutant when both it is close to the stan-
dard and the volatility is significant, because in this
case there is a high risk of violating the standard. Put-
ting the focus of the analysis in the number of viola-
tions of the PM10 daily standard in Madrid City (the
number of days that at least a monitoring station has
violated the standard is 897 in the period under study),
from the data it can be deduced that in 2008, the last
year of the study, this standard was violated between
35 (the maximum number of times that the daily stan-
dard can be exceeded in a year) and 62 times in moni-
toring stations 1, 6, and 9; between 30 and 35 times in
stations 5, 10, 22; and 25, and between 20 and 30 in
stations 7, 8, 14, 19, and 20. In the remainder stations
the number of violations did not exceed 20. There was
found none monitoring station that does not violate
the standard during 2008.

Regarding to the number of violations, in Madrid
City the standard for human health protection (in 24
hours average terms) was set in October, 2002, in 50ug/
m3 (with a tolerance range or 15ug/m3 that was reduced
every year by 5ug/m3) that could not be exceeded
more than 35 days. In January, 2005 the new standard
was maintained in 50ug/m3, but without tolerance
range, and the maximum number of violations a year
was fixed at 7. However, this new standard has come
into effect in January, 2010. Additionally this new nor-
mative has established very close daily and annual
legal limits, which requires not only low levels of PM10
but also a low variation of them along the year. This is
not precisely the case of Madrid City (see Fig. 4) and,
of course, it reinforces the thesis that volatility and its
asymmetric answer is extremely important in case of a
level of pollution close to the legal standard.

Note that monitoring stations 1 and 6 are in the
city centre, whereas the station 9, the most conflic-
tive, is in the South part of the city. Stations 5 and 10
are also in the centre of the city, whereas stations 22
and 25 are located in the South. Hence, it seems not to
be a spatial relation in the number of violations, but
there is in the magnitude relation of the parameters
that estimate the asymmetric answer of volatility. In
fact, monitoring stations 1, 6, 9, 5, 10 are located in
areas with a high traffic density and a large volume of
development of infrastructures and edification works
in this decade. It is true that the area where station 1 is
located is a pedestrian area, but it is also true that
lifetime of PM10 is from minutes to hours, and its travel
distance varies from less than 1km to 10 km.; and the
area that surrounds the zone where monitoring sta-
tion 1 is sited is the area with worst traffic in the city.

Of course, a good system of alerts could be a
crucial tool to avoid violations of the standard in the
areas affected by traffic emissions and both edifica-
tion and infrastructures works, without unnecessarily
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stopping the activity in the construction sector. Thus,
the core question is: How many violations of the stan-
dard could be alerted by taking into account the re-
sults obtained from the TA-ARSV model? This is a
core question since the excessive number of violations
of the PM10 standard is not only a problem of Madrid
City, but also of a handful of big cities. Mediterranean
European cites in general are particularly problematic.
In Table 2. it can be observed that a TA-ARSV strat-
egy could have alerted at least 75% of the violations in
14 out of a total of 22 operative monitoring stations
(stations 3, 5, 6, 10, 11, 12, 13, 14, 18, 19, 22, 23, 24 and
25). The number of violations that the TA-ARSV would
have been able to predict in stations 5, 7, 8, 16 and 20
ranges from 50% to 75%. In monitoring stations 1, 9
(the most problematic ones) and 21, the violations pre-
viously detected by the proposed model does not
reach the 50%, but in spite of that the prediction of
35% or more of the violations in the period 2000-2008
would has been of great help for Madrid environmen-
tal authorities.In the light of these results, it is clear
that TA-ARSV strategies can be considered an ex-
tremely useful tool for environmental protection.

CONCLUSION
Given that there is a generalized consensus that

air quality control is a topic of crucial importance, any
help to prevent a violation of an air quality standard is
of particular interest for the authorities with responsi-
bility in the environmental field. Particulate matter is
especially dangerous. In particular, particles that are
smaller than 10 microns (PM10) are likely to cause ad-
verse health effects including increasing morbidity and
mortality in susceptible individuals. But, despite the
significant successes in this field in the last three de-
cades, PM10 continues to exert a public health impact.
This is precisely the case of Madrid, the study site in
this article, where PM10 continues to be one of the air
pollution problems that most worry the Madrid Mu-
nicipality. In accordance to the current legislation, lev-
els of PM10 are not satisfactory in Madrid City, although
it is true that PM10 levels in Madrid have an important
anthropogenic component: Saharan winds.

Of course, in case that the level of PM10 is close to
the standard, authorities can implement a variety of
measures that, in most cases, drastically affect both

Fig. 3.  Estimated values of φ11 and φ12 at the operative monitoring stations. PM10, Madrid City
     Source: Own elaboration

Fig. 4. PM10 Pearson Variation Coefficient by monitoring station and year
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the economic activity and the daily life of citizens. To
avoid such kind of disturbances, an efficient alert sys-
tem must take into account volatility, because it can
discriminate between situations close to the standard
level followed by a violation and others followed by a
decrease in the level of the pollutant. In this article we
have proposed a new Threshold Autoregressive Asym-
metric Stochastic Volatility model to explain PM10 dy-
namics, and to serve as a system of alert of violations
of the legal standard. This strategy includes two new
parameters in the volatility equation of ARSV model
(φ11 and φ12) to capture the asymmetric behavior of vola-
tility, due to the asymmetric PM10 answer to volatility.
And this extremely important stylized fact must be taken
into account.From the observation of the estimates of
parameters φ11 and φ12 in PM10 daily series in every one
of the monitoring stations that have been operating in
Madrid City during the period under study, it can be
deduced that there is not a general behavior for the
monitoring net. It can be also noticed that the esti-
mates of both parameters are positive, which indicates
a positive relation between the volatility in two con-
secutive instants of time.

In particular, the estimated value of φ12 does not
exceed the estimated value of φ11 (they capture the asym-
metric behavior of volatility in instant t in case of a
positive /negative PM10 relative variation of the same
magnitude in t-1, respectively), in the South part of the
city, which implies that the effect on volatility is greater
in case that the relative variation of the level of PM10
increases than in case that it diminishes. Thus, in case
of a level close to the standard that means a relative
increment with respect to the previous period, authori-
ties must be alert because there is a high probability
that the standard will be exceeded in the next period.
In the city centre and the North part of the city it oc-
curs just the opposite: the estimates of φ11 are greater
than the estimates of φ12, and are certainly close to the
unity. This implies that an increment in the magnitude
of PM10 in period t-1, in a tessitura of high volatility, is
not so worrying, in terms of a violation of the standard
in period t, as it is in the South part of the city. How-
ever, environmental authorities must be worried with
small decreases of the level of the pollutant when it is
close to the standard and the volatility is significant,
because in this case there is a high risk of violating the
standard.Regarding as the proposed strategy as an
alert system of violation of the legal standard, the TA-
ARSV strategy we propose would has alerted at least
the 75% of the violations in 14 out of a total of 22

E13 E14 E16 E18 E19 E20 E21 E22 E23 E24 E25 
82% 78% 63% 85% 87% 56% 35% 93% 84% 79% 80% 

 
operative monitoring stations, between 50% and 75%
in 5 stations and between 35% and 50% in the remain-
der 3 stations. Therefore, it can be concluded that TA-
ARSV strategies can be considered as an extremely
useful tool for environmental protection.
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