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ABSTRACT: Two different methods of Bayesian segmentation algorithm were used with different band
combinations. Sequential Maximum a Posteriori (SMAP) is a Bayesian image segmentation algorithm which
unlike the traditional Maximum likelihood (ML) classification attempts to improve accuracy by taking contextual
information into account, rather than classifying pixels separately. Landsat 7 ETM+ data with Path/Row 186-
26, dated 30 September 2000 for a mountainous terrain at the Polish - Ukrainian border is acquired. In order to
study the role of thermal band with these methods, two data sets with and without the thermal band were used.
Nine band combinations including ETM+ and Principal Component (PC) data were selected based on the
highest value of Optimum Index Factor (OIF). Using visual and digital analysis, field observation data and
auxiliary map data like CORINE land cover, 14 land cover classes are identified. Spectral signatures were
derived for every land cover. Spectral signatures as well as feature space analysis were used for detailed
analysis of efficiency of the reflective and thermal bands. The result shows that SMAP as the superior method
can improve Kappa values compared with ML algorithm for all band combinations with on average 17%.
Using all 7 bands both SMAP and ML classifications algorithm achieved the highest Kappa accuracy of 80.37
% and 64.36 % respectively. Eliminating the thermal band decreased the Kappa values by about 8% for both
algorithms. The band combination including PC1, 2, 3, and 4 (PCA calculated for all 7 bands) produced the
same Kappa as bands 3, 4, 5 and 6. The Kappa value for band combination 3, 4, 5 and 6 was also about 4%
higher than using 6 bands without the thermal band for both algorithms. Contextual classification algorithm
like SMAP can significantly improve classification results. The thermal band bears complementary information
to other spectral bands and despite the lower spatial resolution improves classification accuracy.
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INTRODUCTION
In the recent years various remote sensing

techniques as well as geographical positioning systems
have been widely used  (Alesheikh et al., 2007; Shobeiri
et al., 2007; Cetin, 2009; Solaimani, et al., 2009;
Pijanowski et al., 2009). Wide area coverage, timely
delivery, digital storage, low cost, repeatedly
information acquisition also in areas with limited
accessibility is of the advantages of remote sensing.
Land cover, i.e. the composition and characteristics of
land surface elements is a key information for many
scientific and policy purposes and for sustainable
management activities (Borak & Strahler, 1999; Chintan
et al., 2004; Cihlar, 2001; Ouattara et al., 2004). Although
land cove mapping is one of the earliest applications of

remote sensing but the effect of a thermal band on
classification accuracy and differentiation of land
cover types still is not fully explored. The thermal band
Landsat 7, ETM+6 is measuring the reflected solar
radiation of electromagnetic radiation from 10.40 to
12.50 µm. Thermal sensors essentially measure the
surface temperature and emitted radiation of targets
but reflective bands measures the spectral reflectance
of the surface at different wavelengths. Thus, TIR
remote sensing data can significantly contribute to
the observation, measurement, and analysis of energy
balance characteristics (i.e.,  the fluxes and
redistribution of thermal energy within and across the
land surface) as an implicit and important aspect of
landscape dynamics and landscape functioning (Dale
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& Jeffrey 1999). Thermal information is complementary
to visible and reflected infrared bands for the
identification of different land covers. For instance
Dator et al.  (1998) demonstrate the best way to
differentiate between gypsiferous and saline soils is
to use the thermal band of Landsat TM in the
classification. Their result showed that using the TM
thermal band, the gypsiferous soils can be mapped in
a relatively fast and accurate way (Dator et al., 1998).
Alavi panah et al. (2007) used  remote sensing to study
soil salinity in the Ardakan area, Iran. They concluded
that the behavior of TM thermal and reflective TM
bands is highly depended on the type of land cover. In
another study they also showed that thermal band is
unique in identification of surface materials and
features such as Yardangs in Lut desert (Alavi Panah
et al., 2007). Since the source of thermal remote sensing
is emitted energy from earth’s surface, the handling
and processing of thermal band is totally different from
reflective bands. The different processing steps depend
on the application of thermal band. Using thermal and
reflective information together in classification
algorithms such as Maximum likelihood (ML) and
Sequential Maximum a Posteriori (SMAP) to increase
land cover classification accuracy is one of the  aims
of this study. The other objective of this study is
comparing the accuracy of a contextual classifiers like
Sequential Maximum a Posteriori (SMAP) with a
traditional Maximum likelihood (ML) algorithm. Per-
pixel ML classification is limited by only utilizing
spectral information without considering texture and
contextual information (Dean & Smith, 2003; Gao et al.,
2006; Pizzolato & Haertel, 2003; Zhou & Robson, 2001).
Zhou and Robson (Zhou & Robson, 2001) claimed that
texture information is ultimately necessary to obtain
accurate image classification. Bouman and Shapiro
(Bouman & Shapiro, 1994) also showed that with
SMAP higher classification accuracy is achieved with
ML for SPOT images. McCauley and Engel (McCauley

et al., 1977) compared two spectral/spatial scene
segmentation algorithms (SMAP and ECHO, Extraction
and Classification of homogenous Objects,) with ML.
They found SMAP was better than ECHO and ML in
all mean classification accuracies (McCauley et al.,
1977). In this study increasing the Kappa accuracy by
combining the thermal and reflective information using
contextual classifiers is the main purpose.

The study area is centered on the common border
point of Poland, Slovakia and Ukraine is located
between 48° 52' N and 49° 25' N latitude, 21° 59'  E and
23° 1’ E longitude with a total area about 4543  Km2

(Fig. 1). It covers the biosphere reserve “Eastern
Carpathians” with the Bieszczady national park in
Poland, Uzanski national park in Ukraine and Poloniny
national park in Slovakia. Climatic conditions, different
political and socioeconomic systems as well as
ecological conditions resulted in complex landscape
units. Land covers include deciduous forest dominated
by beech (Fagus sylvatica) and sycamore (Acer
Pseudoplatanus) in the central part, mixed forest
dominated by beech and fir (Abies Alba) in the center
and north eastern  part, coniferous forest composed of
fir, Norway spruce (Picea abies) and Scots pin (pinus
Sylvestris) in  Slovakia and Ukraine part (Kuemmerle
et al., 2006) . Grassland is the dominant landscape in
the northwest, northeast and east. Arable lands are
mostly found in the south west in Slovakia and in the
north east in Ukraine.

MATERIALS & METHODS
The data set in this study consists of:

·    Landsat ETM+ data path 186, row 26 dated 2000-09-
30 (Fig.1) were acquired from the Global Land Cover
Facility (GCLF) server at the University of Maryland,
Institute for Advanced Computer Studies (UMIACS).
GLCF provides free access to an integrated collection
of critical land cover and earth science data (http://
glcf.umiacs.umd.edu).

Fig. 1.  RGB color composite of Landsat 7, ETM+ bands 3, 2 and 1 of the study area at the border of Poland,
Slovakia and Ukraine.
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·    Auxiliary data such as a land cover map provided by
Kuemmerle (Kuemmerle et al., 2006), topographic maps
(scale 1:100 000) and field observation data.
· CORINE Land cover 2000 vector  (http://
dataservice.eea.europa.eu)
·    The 3 arc sec. digital elevation model derived from
SRTM data (~90 m) was acquired from the National
Aeronautics and Space Administrations (NASA) in
geographic projection.

Open source GRASS (Geographic Resources
Analysis Support System ) Ver. 6.0, ENVI Ver.4.1 and
ArcView Ver.3.2a softwares are used for image
processing, classification and presentation of data.

Fig.  2 shows the overall methodology of this study.
The ETM+ data were geo-referenced to UTM zone 34
with WGS 84 datum and then used for data processing.

Fig. 2.  Flowchart of the methodology

Investigating correlation matrix between ETM+ bands
may remarkably help to understand the bands
correlation but obtaining a quantitative method for
selecting the best bands combination is desirable.
Chavez (Chavez, 1984) introduced Optimum Index
Factor (OIF). The OIF method provides a measure of
the spectral information content for optimum band
selection in terms of band’s variances and correlations.
The OIF is calculated as Equation 1:

OIF= Stdi + Stdj + Stdk / | Corr i, j | + | Corr j, k |
+ | Corr i, k |           (1)

where: Stdi : standard deviation of band I, Stdj:
standard deviation of band j, Stdk: standard deviation
of band k, Corr ij: correlation coefficient of band i and
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band j, Corr ik: correlation coefficient of band i and
band k. Corr jk: correlation coefficient of band j and
band k.

In this study two OIF sets, with and without thermal
band in the data sets, were calculated. In order to
achieve the objectives of this study, nine band
combinations were selected. Bands with highest value
of OIF calculation were included in three combinations
of nine. Four band combinations also were selected
from principal components analysis.

Two band combinations were including all seven
ETM+ bands and six ETM+ bands excluding thermal
band. All nine Band combinations were used as input
for two different classifier algorithms. Contextual
classifiers, Sequential Maximum a Posteriori (SMAP)
and a traditional per-pixel Maximum likelihood (ML)
algorithm were used. The ML, calculates (Bayesian)
probability function from inputs for prototype vectors
of each class. The data vectors consist of digital values
from multi-spectral bands. Training samples are usually
collected from field observations, aerial photos or
previous land cover maps (Gao et al., 2006). This
algorithm calculates the statistical probability based
on the mean and covariance matrix of clusters. The
probability membership value (Li(x)) of a pixel x to class
i is:

Li(X) = (2ð)-n / 2 |Vi| -1/ 2 e- y/ 2                (2)

Where: Vi is the covariance matrix of class i, n is
the number of spectral bands and y is the Mahalanobis
distance.

One limitation of ML algorithms is that each pixel is
only assigned to one class and cause mixed pixel.
Sequential Maximum a Posteriori (SMAP) attempts to
improve classification accuracy by segmenting the
image into regions rather than segmenting each pixel
separately. This new procedure is proposed by Bouman
and Shapiro (1994) and is calculated recursively. SMAP
is a Bayesian image segmentation which uses the
sequential maximum a posteriori estimator in
conjunction with a novel multi scale random field
(MSRF) and takes advantage of the spatial information
of samples in the spectral bands. This kind of estimator
minimizes the expected size of the largest misclassified
region. The MSRF is composed of a sequence of
random fields with coarse to fine scales. This method
can be computed in time proportional to MN where M
is the number of classes and N is the number of pixels.
Details of the algorithm are given by Bouman and
Shapiro (1994). Open source GRASS software version
6.0 (GRASS Development Team, 2006; Miliaresis &
Paraschou, 2005) was used for both image classification
algorithm. Co-occurrence image texture features
(contrast, correlation, variance and entropy) were

calculated for small sub regions of the classified image.
Classification accuracies such as Kappa index,
omission and commission error were calculated using
confusion matrix analysis. Omission and commission
error are related to producer’s and user’s accuracy
respectively. The user accuracy is the probability that
a certain reference class is classified as this class in
the thematic map. The producer accuracy is the
probability that a sample point in the map is that
particular class. A standardized Z-test (Equation 3)
incorporating the overall Kappa index and Kappa
variance was used to determine if classifications were
statistically significant different from one another
(Congalton & Green, 1999).

Z =  | k1-k2 | / sqrt ( var (k1) + var (k2))                     (3)

Where k1 and k2 are the two Kappa and var (k1)
and var (k2) are their estimated variances. The
hypothesis that two Kappas are equal is rejected for
95% confidence level if | Z | value is greater than 1.96.
The | Z | value for confidence levels 90% and 85% are
1.64 and 1.44 respectively.

RESULTS & DISCUSSION
Feature space analysis was used to understand

the relation between classes in two-dimensional spaces
of ETM+ bands. Figure 3 shows the spatial distribution
of different land cover classes between red (ETM+3)
and near infrared (ETM+4) bands on the left (a) and
ETM+4 and ETM+6 on the right (b). Characteristics of
each land cover classes are shown in table 1. As it is
obvious in fig3.a all land cover classes can be grouped
into five major categories. Forest including deciduous
with brownish leaves (class no. 6), mixed (class no. 8)
and coniferous (class no.7) trees were easily separated
from non- forest areas. Agricultural lands (class no.14)
which at the time of image acquisition were harvested
or plowed appear as a individual classes with low value
in the infrared and red band. Fig3.b shows the land
covers including to thermal properties. Harvested
agricultural lands (class no.14) with bare soils absorb
and re-emitting the higher percentage of the sun’s
energy and so have higher surface temperature than
other classes such as forest or non- forested area.
Forest area with green leaves due to evpotranspiration
effects on temperature reduction shows a lower emitted
energy than non-forest and agriculture area. Deciduous
with brownish leave (class no.6) have the lowest radiant
value in the study area.

Spectral signatures can be determined to identify
individual land cover classes. By comparing the re-
sponse patterns of different classes at different wave-
lengths we can distinguish between them. For example,
water and vegetation may reflect similarly at visible
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wavelengths but are almost always separable in the
infrared. Spectral response can be quite variable, even
for the same target type, and can also vary with time
(e.g. “green-ness” of leaves) and location. Knowing
where to “look” spectrally and understanding the fac-
tors which influence the spectral response of the fea-
tures of interest are critical to correctly interpret the
interaction of electromagnetic radiation with the sur-
face. Figure 4 shows the spectral signature of two wa-
ter classes. Red and near infrared radiation is absorbed
more by water classes than shorter visible wavelengths.
Class no. 12 includes the Solina reservoir in the Po-
land and Starina reservoir in the Slovakia but class no.
11 consist of streams, canals and rivers resulting in
mixed pixels and higher values. Spectral signatures of
four forest classes are shown in figure 5.

The internal structure of healthy leaves act as
excellent reflectors of near-infrared wavelengths. So

class no.13 (deciduous with green leaves) reflects
more in all bands. Conversely, class no.7 (coniferous
forest) which mainly covers the northeast of the study
area has the lowest signature value in this group.
Spectral signature of mixed forest (class no.8) is higher
than for coniferous forest but lower than deciduous
forest.

Figure 6 indicates the spectral signatures of the
non-forest area. Class no.14 (agricultural lands)
shows the different spectral response in all bands.
This class tends to have reflection properties that
increase approximately monotonically with wave-
length. Due to factors such as the color, constituents
and especially the moisture content, this class tends
to have high reflectance in all bands. The class no.10
which is transitional zone between shrubs and forest
shows the spectral signatures similar to these two
groups.

Fig. 3.  Distribution of the land covers classes in two-dimensional feature spaces.
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Fig. 4.  Spectral signatures of two water classes, class 11 (water courses) and, class 12 (water bodies).
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Fig. 1.  Spectral signatures of Forest land covers (Class description in table 1).

Table. 1. Description of Land cover classes of the study area.
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Fig. 6. Spectral signatures of non-forest land cover (Classes descriptions are in table 1).
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After feature space and spectral signatures analy-
sis, the data are classified using nine band combina-
tions and the two described methods. In overall 18 clas-
sified images are achieved and accuracies examined.
Figure 7 shows four result produced with the Sequen-
tial Maximum a Posteriori (SMAP) method. The result
shows that SMAP as the superior method can improve
Kappa values for all band combinations with on aver-
age 17% compared to ML algorithm (figure 8). This is
due to the nature of the SMAP algorithms that con-
sider the texture and spatial information. This result
confirm the finding of other researchers (Bouman and
Shapiro, 1994;  McCauley and Engel, 1977;  Zhou &
Robson, 2001). The result maps showed that the domi-
nant land cover of the Carpathian ridge is the decidu-

ous forest. The discontinuous urban fabrics (class
no.1) are the major land covers on the lower part of the
southwestern (Slovakian side), south and northeast-
ern (Ukrainian side) of the study area. The lower areas
in the southwestern regions are dominated by agricul-
tural lands (class no.14).

The highest Kappa accuracy of 80.37 % and 64.36
% is achieved respectively using all 7 bands for both
SMAP and ML classifications algorithm. Excluding
the thermal band from classification (classification
with 6 reflective bands) decreased the Kappa values
by about 8% for both algorithms. The band
combination including PC1, 2, 3, and 4 (PCA calculated
for all 7 bands) produced the same Kappa value as
bands 3, 4, 5 and 6.

Fig. 7.Classification results with Sequential Maximum a Posteriori (SMAP) method
(Class descriptions refer to table 1).

Fig. 8. Kappa accuracies of the classification results with two Sequential Maximum a Posteriori (SMAP) and
traditional per-pixel Maximum likelihood (ML) algorithms.
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The Kappa value for band combination 3, 4, 5 and 6
(The first and second ranks of OIF with inclusion of
thermal band) was also about 4% higher than using 6
bands without the thermal band for both algorithms.
Lowest kappa accuracy for both classification methods
is achieved with 3, 4 and 5 ETM+ bands (ML=46% and
SMAP= 64%). Details of class accuracy with
contribution of all bands in SMAP algorithm for each
land cover classes are also provided to explore the role
of the reflective and thermal bands in accuracy
improvement (Figure 9).  Using all 7 ETM+ bands in
SMAP algorithms improved the accuracy of land cover
classes 2, 3, 4, 5, 6, 8, 9 and 10. The already high accuracy
for five classes including waters (class no 11 and 12),
agricultural lands (class no.14), coniferous forest (class
no. 7) and deciduous with green leaves did not increase
with thermal band and remained at the same levels. The
size, shape and thermal properties of various land cover
classes play an important role in differentiating between
them. Some features are warming up more quickly than
other classes and in some cases may have the same
effective blackbody temperatures. So in these cases,
there is not a good thermal differentiation and inclusion
of thermal band may not help to improve accuracy.
Coupled with the fact that some of the classes were

small (agricultural lands or discontinuous urban fabrics)
in comparison with the conflicting classes (various
pastures, grasslands or residential pattern), sufficient
thermal differences may not exist.  Following the
inclusion of the thermal data, the kappa accuracy is
greatly increased for the classes no.2 (non-irrigated
arable lands) and no. 4 (complex cultivation lands). Class
no.1 (discontinuous urban fabric) which includes the
buildings, roads, villages, structures, small gardens and
orchards due to high variability in feature, close thermal
radiation properties and possibly small diurnal changes,
is the only land cover class which inclusion thermal
band in classification reduces its Kappa accuracy’s about
21%. Examination of other band combinations based on
the optimum index factor (OIF) calculation produced
the same results and confirmed these finding (Figure
10). The Kappa statistics and measures of variances
derived from the confusion matrices were examined to
determine if the results of the classification methods are
statistically different from one another at a 95%
confidence interval (Table 2). All the possible pairing of
the classification methods were tested and result of Z
scores showed that all pairs of the two classification
methods are different at 95% confidence level (Z-Score
>1.96).

Fig. 9. Kappa accuracies of the land cover classes with Sequential Maximum a Posteriori (SMAP) algorithm
with and without thermal bands inclusion in the data set (Class description in table 1).

Band Combinations ML SMAP VAR  
MLK 

VAR  
SMAP Z-Score (95%) 

All 7 bands 0.64 0.80 0.000026 0.000018 24.12 
3456 ETM+ bands 0.59 0.77 0.000028 0.000021 25.19 
pc1234 of all 7 bands 0.59 0.77 0.000028 0.000021 25.77 
6 bands 0.56 0.72 0.000029 0.000023 21.66 
PC 1234 of 6 bands 0.54 0.71 0.000278 0.000023 9.84 
3457 ETM+ bands 0.49 0.67 0.00003 0.000025 24.35 
PC123 of bands 3456 0.47 0.67 0.000029 0.000025 27.04 
PC 123 of bands 3457 0.49 0.67 0.00028 0.000025 10.21 
345 ETM+ bands 0.47 0.65 0.000029 0.000026 23.73 

 

Table 2.  Z test of classification results to determine significant differences among the classification results.

ML= Maximum likelihood, SMAP = Sequential Maximum a Posteriori, VAR = variance.

Land Cover Classification of Biosphere Reserve



Fig. 10. Kappa accuracies of the land cover classes with Sequential Maximum a Posteriori (SMAP) algorithm
with and without inclusion of the thermal band in the data set. These band combinations are selected based on

the OIF calculation with and without thermal bands inclusion. (Class description in table 1).

CONCLUSION
The major obstacle for using remote sensing data
for land cover classification is the similarity some of
the surface spectral characteristics under a wide
range of environmental conditions. Combining
thermal and reflective information can help to
differentiate between similar classes. Thermal band
due to lower spatial resolution (60 meter in Landsat
7) compared with reflective bands (30 meter) are
excluded from classification processing in most
studies. In this study we showed that the thermal
band coupled with proper classification algorithms
like Sequential Maximum a Posteriori (SMAP)
algorithm could significantly increase the kappa
accuracy for most of land cover classes. This
indicates that the thermal data can aid in classifying
certain land cover classes providing that there is a
good thermal differentiation properties. Using first
and second ranks of the optimum index factor (OIF)
calculation with inclusion of thermal band in data
set may provide the best bands combination for
classifications. Supplying thermal band in band
combination in order to combine emitted and
reflective information is necessary and may enhance
the accuracy.  But some features are warming up
more quickly than other classes and in some cases
may reach the  same effect ive  blackbody
temperatures. Thus in these cases, due to close
radiation temperature, inclusion of thermal band may
not help to improve accuracy. Coupled with small
size of some of the classes (agricultural lands or
discontinues urban fabrics) in comparison with the
conflicting classes (various pastures, grasslands or
residential pattern), sufficient thermal differences
may not exist.
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